
asss User’s Guide – 1.4.2

Grelminar <grelminar@yahoo.com>

June 8, 2006

1 Introduction

asss is a new server for Subspace and Continuum. It was written from scratch by Grelminar
(grelminar@yahoo.com), with help from a bunch of other people (see the Acknowledgements
section). The name asss is an acronym for “a small subspace server.”

Although care has been taken to remain compatible with the original Subspace server, known
as subgame, players, and especially staff and administrators, should be aware that asss is a
different piece of software. It has many features that subgame is missing, but it is also missing
some from subgame. The features that are common to both may work different. They will have
different bugs. In short, don’t expect everything to work the same as in subgame, because it
won’t.

1.1 Platform and Requirements

asss was developed primarily on a Linux system on the Intel x86 platform. Although some effort
has been spent making it run on Windows also, people running it on non-Linux systems should
not expect everything to work perfectly: there may be missing features and it may run slower.

The requirements for building and running asss are pretty minimal: The system should
have the pthreads library (any recent Linux system should), Berkeley DB 4.0 or greater (older
versions won’t work) (optional), mysql (optional), Python 2.2 or newer (optional), and zlib. To
compile asss from source (on either Linux or Windows), the include files for those libraries must
be installed, as well as a C compiler. If you’ve obtained the source from CVS, you’ll also need
the Python interpreter in order to generate certain files. If you’re using a tarball instead, it will
come with those files present already.

The Makefile contains some information about which parts of it might need to be modified
for your environment. You’ll probably have to modify the paths that point to installed libraries.

It also contains some options that you can change to customize the build process to your
environment. You can turn debugging, optimization, and profiling on and off by changing the
values of the debug, opt, and prof Makefile variables to yes or no.

If you’re missing mysql, you should comment out or change the have_mysql variable. That
will disable building all modules that require mysql, which is currently only the alias database.
If you’re missing Berkeley DB, you should comment/change the line that sets have_bdb. This
will disable the scoring modules and the dbtool. And if you’re missing Python, you should
comment/change the line that sets have_python, which will disable the Python module loader.

The Makefile should work without excessive modification on Linux, FreeBSD, Cygwin, and
Mingw32.

Currently, only 32-bit Intel platforms are supported because of byte-order issues. Eventually,
asss will be able to run on other architectures, but for now, Intel will have to do.

2 File Layout

The server always access files relative to the directory it was started from, and it expects to
have certain files and directories in certain places. That means that to run multiple copies of

1

the server on one machine, you should make sure that each one is started from its own home
directory.

Here’s what a typical zone’s file layout should look like:

/home/myzone

+ news.txt

+ scrty

+ scrty1

+ bin

| + asss

| + dbtool

| + backtrace

| + scoring.so

| + security.so

| + fg_wz.py

| + fg_turf.py

| + ...

|

+ arenas

| + (default)

| | + arena.conf

| |

| + (public)

| | + arena.conf

| |

| + duel

| | + arena.conf

| |

| + pb

| + arena.conf

| + balls.conf

| + pb.lvl

|

+ conf

| + global.conf

| + modules.conf

| + groupdef.conf

| + groupdef.dir

| | + default

| | + mod

| | + smod

| | + sysop

| |

| + svs

| + svs.conf

| + prizeweights

| + misc

| + ship-warbird

| + ...

|

+ log

| + asss.log

| + asss.log.1

|

+ maps

| + zone1-pub.lvl

2

| + another.lvl

|

+ data

+ data.db

The most important directory is bin. This directory should contain the main asss binary, as
well as all files containing modules to be loaded by the main binary.

conf contains config files that affect the server as a whole. Among the important files
are modules.conf, which specifies the list of modules to load at startup, global.conf, which
contains config settings for the whole server, groupdef.conf, which describes which capabilities
belong to each group, and staff.conf, which assigns groups to various players. groupdef.conf
uses files in the groupdef.dir subdirectory to ensure more powerful groups have all the capa-
bilities of lesser ones.

conf can also contain partial config files for arenas to include. The default directory structure
contains an svs directory, with the Standard VIE Settings, split into multiple files, by ship and
function.

log will be used by the server to deposit any log files that it creates.
data is used to keep the database holding all persistent information, including scores. Infor-

mation for all arenas is kept in the same database file.
maps is an optional directory that the server will search for .lvl files in. These files can also

be located in arena directories, so this isn’t a required directory. It might simplify administration,
though, to keep all map files in this directory.

Each arena gets its own subdirectory in the arenas directory that holds config files, maps,
and other data. Two subdirectories are special: (public) is used for all public directories,
and (default) is used for all arenas for which a directory doesn’t exist. Note that it’s ok for
(public) to not exist, in which case public arenas will use the configuration from (default).

Each arena directory must contain a file named arena.conf, which contains the settings for
that arena. For ease of administration, this file may #include other config files in either the
same directory, or the global conf directory.

The file news.txt should be located in the base of the zone directory as well, unless another
location is specified in global.conf.

2.1 Running asss

2.1.1 Command line arguments

There are currently three things you can give asss on the command line:

• A directory name on the command line will be interpreted as the name of a directory
containing the zone files (as described in the previous section). If no directory is specified,
the current directory will be used.

• The optional switch --daemonize (abbreviated -d) tells it to fork into the background
before starting up. You might want to use this when running asss from a startup script.

• Another switch, --chroot (abbreviated -c), tell is to attempt to chroot to the zone direc-
tory before starting up. See the next section for more information on this.

2.1.2 Running chrooted

If you want to increase the security of your host, you can run asss chrooted. This means that it
will run with its root directory set to the zone directory, and it won’t be able to access any files
outside of that directory.

You need to do a bit of preperatory work before chroot can work. You’ll need to make a lib

directory in the zone directory containing all the shared libraries needed by any modules you’ll be
loading. On my machine, I needed to put the following files from /lib and /usr/lib in there:
ld-linux.so.2,, libc.so.6, libpthread.so.0, libz.so.1, libm.so.6, and libdb-4.0.so.

3

You’ll also have to make sure that nothing within the zone directory is a symlink pointing
outside of the zone directory. So you’ll need a separate copy of the bin directory and shared
settings files for each separate zone. It’s also a good idea (although not strictly necessary) to
create an etc directory with limited passwd and group files, and also things like ld.so.conf,
hosts, and nsswitch.conf.

If you’re using Python modules, you’ll also need a copy of the Python standard library in your
chroot environment. It’s usually found in /usr/lib/python2.3. Note that you can hard-link
the actual files to avoid wasting space.

In order to do a chroot, asss needs to be run as root. It won’t continue running as root,
of course: as soon as it successfully chroots, it drops its priviliges and runs as a normal user.
The user it runs as depends how it was run: if the asss binary is installed setuid-root, it will
always drop to the user who invoked the binary. If it’s actually run by the root user, it will
use the contents of the USER environment variable to control which user to drop to. So to run
it as user “nobody” from a script running as root (like rc.local), you can run something like
env USER=nobody /path/to/asss /zone/dir --chroot --daemonize.

3 Modules

Almost all of the functionality of asss is split into many small modules. Currently modules can
be written in either C or Python. Most core modules are written in C, since the Python module
support is still somewhat experimental.

C modules are in separate libraries with the extension .so (on Unix) or .dll (on Windows).
One shared library can contain any number of modules.

There are currently 79 modules that are part of asss, but each zone might have some custom-
developed modules for their zone as well.

When the server starts up, it loads all of the modules listed in the file modules.conf. Once
it’s running, more modules can be loaded with the ?insmod command, and modules can be
unloaded with ?rmmod. The current list of loaded modules can be examined with ?lsmod.

The modules.conf file has a special format that’s slightly different from the rest of the config
files. It has no sections. Each line should contain a “module specifier.” A module specifier is
something of the form filename:module for C modules, or <py> filename for Python modules.
The filename part should be the name of the file containing the module, without the extension
(.so or .dll or .py). The module part should be a module name that’s contained in the file. The
colon separating them is just a colon. Comments in the modules.conf file are indicated by an
initial semicolon or pound sign.

If a particular zone has no need for a particular module (e.g., Chaos Zone doesn’t have any
flags or balls, so it doesn’t need those modules), it should’t load those modules. Only loading
the modules that are actually used for a zone will decrease the memory usage of the server and
may make it run faster.

Once a module is loaded into the server, it has full access to the server’s data, including
player IP addresses, machine id’s, scores, and passwords. It can also access files on the machine
it is running on, and make network connections, and it can easily crash or deadlock the server.
Python is a safe language, so a module written in Python can’t crash the server. It can still
deadlock it, though, and still has arbitrary access to the system. Thus, admins and sysops
should be careful to only load modules from sources that they trust.

4 Capabilities

The old Subspace server supported a very limited notion of authority: There were moderators,
super moderators, and sysops. Each level allowed access to more and more commands. Addi-
tionally, moderators and above could see private freqs and private arenas, and bypass freq and
arena size limits.

asss is much more flexible. It lets sysops and admins assign any set of powers to any group
of people. In the asss model, each of the above powers, plus a few more, like energy viewing, is

4

assigned a capability name. Each command also gets a capability name (actually, each command
gets two, one for using the command with public messages, and one for using it with private
messages). Whenever the server needs to determine if a player can take a certain action, it asks
the capability manager, which replies either yes or no.

The capability manager loads the file conf/groupdef.conf, which uses the files in conf/groupdef.dif,
to determine which groups have which capabilities.

The server comes with one capability manager, contained in the capman module, but there’s
no reason why another one couldn’t be used if your zone has peculiar needs for assigning people
powers.

4.1 Capability names

The most common capability names are for commands. If a player tries to run a command,
say, ?lastlog, the server would query the capability manager with the name cmd_lastlog.
If a player uses a command as a private message, as in :annoying_player:?freqkick, the
capability name used would be privcmd_freqkick.

There are several non-command capabilities that are currently used in the server:

• seeprivarena controls whether private arena names are sent to a player for the ?arena

command.

• seeprivfreq determines if a player sees private freqs in the freq listing.

• findinprivs is needed by a player running ?find for the server to report the names of
private arenas. (Not implemented yet.)

• seeepd allows players to see other ship’s energy and specials from spectator mode. (“epd”
stands for extra position data.)

• seesysoplogall allows a player to see all important log messages in the zone.

• seesysoplogarena only allows a player to see only important log messages having to do
with the arena he is currently in.

• seemodchat allows players to see the moderator chat.

• sendmodchat controls who can send moderator chat messages. Usually, these two capabil-
ities would be given to the same people.

• uploadfile allows a player to upload files. Note that the player must also have the
cmd putfile to upload a file using that command.

• bypasslock allows players to switch ships even though the arena or themselves have been
locked into a ship or into spectator mode by a staff member.

• bypasssecurity lets players use unauthorized clients, or prevents kicking off for security
checksum failures.

• invisiblespectator makes players not show up on the list given when the person they
are spectating uses the ?spec command.

• unlimitedchat allows a player (e.g., a bot) to bypass chat flooding checks.

• changesettings lets clients use the settings change packet (required for ?quickfix/?getsettings).

• isstaff makes players show up in ?listmod output.

• seeallstaff allows a player to see all non-default-group players, even if they lack isstaff.

5

4.2 The default capability manager

The default capability manager works with groups. Each group has a set of capabilities, and
players are assigned to groups. To check if a player has a certain capability, the capability
manager simply checks if the group he’s in has that capability.

To determine which groups have which capabilities, the groupdef.conf file is used. It should
have a section for each group, and a line within that section for each capability.

To determine which players belong to which groups, the staff.conf file is used. Each section
in the file corresponds to an arena1, except for the special section (global), which applies to
and overrides all other arena settings. Keys are player names, and values are groups. So a
setting like “Grelminar=sysop” in the (global) section would give Grelminar sysop powers in
all arenas, while a setting “ZippyDan=smod” in the pb section would give ZippyDan smod powers
in arenas pb, pb1, pb2, etc.

The command ?setgroup can be used to control group assignment without editing the
staff.conf file manually.

The default capability manager also supports passwords for groups, although using this
feature is strongly discouraged. It is intended for sysops or other staff members to gain privliged
access when the zone isn’t connected to a billing server to provide authentication.2 To use it,
add keys to the GroupPasswords section, of the form “group = password”.

4.2.1 Emulating the old system

Using the default manager, it’s relatively easy to set up asss to emulate the old server’s moder-
ator, super moderator, and sysop model: The groupdef.conf file looks like this:

; conf/groupdef.conf

[default]

#include groupdef.dir/default

[mod]

#include groupdef.dir/default

#include groupdef.dir/mod

[smod]

#include groupdef.dir/default

#include groupdef.dir/mod

#include groupdef.dir/smod

[sysop]

#include groupdef.dir/default

#include groupdef.dir/mod

#include groupdef.dir/smod

#include groupdef.dir/sysop

The files in groupdef.dir contain simply lists of capabilities. Each group includes the file
for itself, as well as the files for the lesser powerful groups. The way groupdef.conf includes
files means that smods will have all the capabilities of mods, plus more, sysops will have more
than smods, etc.

1Actually an arena group name; see the section on arena groups.
2But there’s a better way to do this: if you load the auth file module before billing, the server will fall

back to using auth file when the billing server is not connected. Staff members can set passwords using the
?passwd command (specific to auth file), and they will have access to their usual group.

6

5 Logging

asss has extensive logging capabilities. Any remotely interesting event in the game will generate
a log message, which will be passed to any number of loaded logging handlers.

5.1 Levels

There are five importance levels defined for log messages: DRIVEL is unimportant information
that you probably don’t want to see, but is logged anyway, just in case. INFO is basic information
about common, unexceptional events. MALICIOUS is for exceptional conditions that are caused
by players sending bad data to the server. These might be indications of cheating or other illicit
activity. They also might be caused by abnormal network conditions. WARN is for error
conditions that can be worked around, or aren’t too catastrophic. ERROR is for really really
horrible error conditions. These usually indicate misconfigured servers or bugs in the server
itself.

5.2 What is logged?

There are currently 381 distinct log messages in the server. By type, there are 37 ERROR
messages, 111 WARN messages, 81 MALICIOUS messages, 65 INFO messages, and 87 DRIVEL
messages.

5.3 Filtering

Log handlers support a common method of filtering that give you lots of control over which
handlers see which messages.

By default, all messages are seen by all handlers. To limit messages to a handler log_foo,
create a section with the same name as the handler in global.conf. The keys in that section
will be module names, and the values will be a set of priority levels to allow, specified by listing
the first letters of the allowed levels. The special key all will be used for modules not listed.
For example:

; this keeps flag positions and ball fires from appearing in the log

; file, but allows other DRIVEL messages.

[log_file]

all = DIMWE

flags = IMWE

balls = IMWE

; this allows all messages to go to the console except those from

; cmdman.

[log_console]

all = DIMWE

cmdman = none

; this lets only important messages (malicious and error) go to sysops

[log_sysop]

all = ME

5.4 Commands

In general, all commands run by anyone are logged, at level INFO, along with their parameters
and targets. Some commands, however, contain personal or sensitive information that might
be abused by zone staff who can view logs. To prevent this abuse, there is a hardcoded list of
commands whose parameters don’t get logged (they get replaced by ... in the log messages).

7

5.5 Handlers

The current log handlers are:

• log_console simply writes all log messages to standard out, which is usually the terminal
that asss is started from. Usually, asss will run detached from any terminal, so this is
primarily intended for debugging.

• log_file write all log messages to a file. The name of the file is controlled by the
Log:LogFile configuration option. The command ?admlogfile may be used to flush
or reopen the log file while the server is running. asss always appends to a single file.
If log rotation is desired, it should be accomplished with an external program such as
logrotate.

• log_sysop informs players of log events within the game. “Important” messages, as de-
fined by the logging filter, are sent to players with the capabilities seesysoplogall and
seesysoplogarena. Players with the latter capability only see log messages that originated
in the arena. This logging module also implements the ?lastlog command.

• log_staff broadcasts log lines generated by a specific set of commands to all online staff.
The intention is to let other staff members know when one of them uses certain important
commands. The default set of commands is ?warn, ?kick, and ?setcm, although the list
is configurable with the log_staff:commands setting in global.conf.

6 New Features

6.1 Arena groups

To make the process of creating multiple arenas with identical settings easier, asss supports
arena groups. If an arena name ending with a number is requested, the configuration and other
data for that arena will be taken from the directory named by that arena without the number
at the end. So arenas smallpb1, smallpb2, smallpb3, etc. will all be identical in configuration
to smallpb, which uses data in the directory arenas/smallpb.

Persistent data (e.g., scores) are also partially shared between arenas in the same group. Data
in the “forever” and “per-reset” intervals will be shared, but data in the “per-game” interval
will be kept separate between different arenas in the group.

The group name of an arena (the name without the number at the end) is also used for
determining staff groups.

6.2 Freq Management

Requires module: freqowners

If the arena controller allows it, private freqs can now be owned. The first player to move to a
particular private freq becomes an owner for that freq. An owner can kick non-owners off of his
freq by sending them the command ?freqkick. An owner can share owner privileges to other
players by sending them the command ?giveowner. The spec freq can’t be owned.

The config variable Team:AllowFreqOwners controls whether to enable freq ownership. It
defaults to on.
Requires module: fm password

The fm_password module implements password-protected freqs. It’s a freq manager module
meant to sit on top of another freq manager (like fm_normal). The ?freqpwd can be used by
anyone on a private freq to set a password. To join a freq with a password, players must use the
?joinpwd command before attempting to switch to the protected freq.

8

6.3 Arena limiting

Requires module: arenaperm

Any arena can specify a General:NeedCap value in it’s config file. If present, players will not
be allowed to enter the arena unless they have the specified capability.

6.4 Moderator chat

asss includes an actual moderator chat system, which should be an improvement over the
?cheater-based systems in use currently.

Mod chat messages begin with a backslash (\), and are displayed in dark red (the same color
as sysop warning messages). Who is allowed to send and recieve mod chat is controlled by two
capabilities: seemodchat and sendmodchat, which allow players to see and send mod chat.

6.5 Multiple commands

You can specify multiple commands on one line by putting a vertical bar (|) directly after the
command character (? or *), and the separating commands with more bars. Do not put any
spaces or other characters between the bars and the start of the command. Multiple private com-
mands are supported, but you can’t mix public and private commands on the same line. There’s a
hard limit of five commands on one line. Example: ?|flagreset|shipreset|prize warp|aa go!.

6.6 Built-in alias database

Requires module: mysql, aliasdb

asss includes a hastily-written alias database. The alias database depends on mysql support,
although it’s written so that it should be easy to port to another relational database if necessary.

All logins are automatically entered if the aliasdb module is loaded. There are several ways
to query the database: ?alias lets you do general-purpose queries, ?qip allows you to query
by IP address range. ?rawquery allows you to make custom queries with most SQL commands.
You can find the documentation for these commands in the Commands section.

The ?last command uses the alias database to find the last 10 people to log in.

6.7 Authentication

Ok, so this isn’t new, but it’s greatly expanded in functionality: authentication can now be done
with things other than billing servers, and some authentication modules can be “stacked.”

For example, one useful auth module is auth_file, which uses a file of hashed passwords
to authenticate users. This module is intended for use by private servers who want to allow a
small group of people (say, a squad) to play together, and not allow anyone else in. It can also
be used as a fallback module by the billing module (which acts as an auth module, among
other things). This means if the billing server is connected, login requests will be authenticated
against the billing server, but if it isn’t, they get passed to auth_file.

If the user is listed in the file and supplies a correct password, he will be allowed access
and be granted groups. If not, he will be either accepted or rejected depending on the value of
General:AllowUnknown setting in passwd.conf. If an unknown player is allowed, he will not

be assigned groups based on name. (That will also not happen if no auth modules are loaded.)
The auth_file module also allows you to lock a specific player name out of a zone.
Note: In the default configuration, auth_file is insecure, since anyone can log in as a player

that has no password set, and then set one. See the documentation for General:RequireAuthenticationToSetPassword,
and also read the comments in the default passwd.conf.

To use a fallback module for the billing module, simply make sure that that module is
loaded before billing is loaded.

Two more authentication modules are intended to be layered on top of the basic ones:
auth_prefix lets only staff members log in with certain punctuation characters as prefixes to
their real account names (controlled by the prefix_x capabilities), and auth_ban implements

9

simple banning by machine-id, as an authentication layer. It provides the ?kick, ?listmidbans,
and ?delmidban commands to control the ban list.

6.8 Multiple “public” arenas

asss supports a general player placement interface to decide which arena a player should be
placed in upon entering the zone. The most useful arena placing interface is ap_multipub,
which has the effect of creating multiple “public” arenas.

To use ap_multipub, simply make sure it’s loaded from modules.conf (somewhere near the
end is good). It is controlled by two settings in the global config file: General:PublicArenas is a
whitespace-separated list of public arena types (not names). For example, if General:PublicArenas
is set to “pb turf wz,” the server will start placing people in the arena named pb1, then when
that gets full, it will move to turf1, then wz1, pb2, etc. To control how many people it will
put in each arena, use General:DesiredPlaying, which is a count of playing players (i.e., not
spectators).

7 Lag Control

7.1 Lag Measurement

Lag, which includes both latency and packetloss, is difficult to measure accurately and control.
asss does as well as it can with limited information.

There are several ways that the server collects latency information: Position packets sent from
the client contain timestamps that the server can compare to its own current time to determine
approximately how long the packet took to get there. This is complicated by the fact that
the times on the server and client aren’t always perfectly synchronized. Reliable packets need
to be acknowledged, and the round-trip time between the sending of a reliable packet and the
reciept of its acknowledgement can be measured. That will be equal to approximately twice the
one-way latency, but that isn’t exact either because the two trips might take different amounts
of time. Finally, the client can measure latency using the same techniques, and periodically send
its results to the server for processing.

Packetloss is slightly easier: the client and server can keep track of how many packets each has
sent and recieved, and compare numbers periodically. Reliable packets also provide oppertunities
to measure packetloss: if a reliable packet isn’t acknowledged within the timeout, the server
knows either the original packet or the acknowledgement got lost. If a reliable packet is recieved
twice, the server knows the acknowledgement got lost. Again, the client can also measure these
numbers and send the results to the server.

7.2 Settings and Actions

There is one global setting for lag, Lag:CheckInterval which controls how often each player’s
lag numbers are checked to perform actions. It’s specified in ticks. Each arena can specify
its own lag limits. All of the parameters described below go in the Lag section in the arena’s
configuration file (or a file included from it).

There are four main values that lag actions are based on: average ping (determined by
an exponential averaging scheme, based on S2C, C2S, and reliable pings), S2C packet loss, S2C
weapons packet loss, and C2S packet loss. Each value has four thresholds associated with it: one
controls when a player gets forced into spectator mode, one controls when a player is allowed to
pick up flags and balls, and two control weapons ignoring. The units of the settings concerning
latency are milliseconds, and the units of the settings concerning packetloss are tenths of a
percent (i.e., fractions out of 1000).

Forcing into spec is easy enough: if the value is over the threshold when a player is examined,
he’s forced into spec. Disabling flags and balls also works on a simple threshold: if the value is
above it, the player won’t be allowed to pick up any flags or balls. If he’s currently carrying a
flag or ball, and one of the values moves over the limit, he’ll get to keep it.

10

Weapon ignoring is slighly more complicated: There are two thresholds, one to start ignoring
weapons, and one where all weapons will be ignored. If all of the values are below their respective
starting thresholds, none of the player’s weapons will be ignored. If one of them is higher,
a percent of incoming weapons from that player to be ignored is calculated by interpolation
between the starting threshold (0%) and the higher threshold (100%). If multiple values are
above their starting threshold, the percent of weapons that gets ignored is the maximum of
the percent ignored from each value. C2S packetloss doesn’t cause weapon ignoring, since C2S
packetloss generally gives the player a disadvantage, not an advantage.

The names of these settings are: PingToSpec, PingToStartIgnoringWeapons, PingToIgnoreAllWeapons,
PingToDisallowFlags, S2CLossToSpec, S2CLossToStartIgnoringWeapons, S2CLossToIgnoreAllWeapons,
S2CLossToDisallowFlags, WeaponLossToSpec, WeaponLossToStartIgnoringWeapons, WeaponLossToIgnoreAllWeapons,
WeaponLossToDisallowFlags, C2SLossToSpec, and C2SLossToDisallowFlags. Their func-
tions should be clear from their names and the above description.

One final setting SpikeToSpec, determines the length of time that the server can recieve no
packets from a player before forcing him into spectator mode.

7.3 Bandwidth Throttling

asss supports bandwidth throttling for players on slower connections. To make the game fairer,
packets are prioritized depending on their function. For example, weapons packets will be pre-
ferred over chat messages when deciding how to use up the last few bytes of alloted bandwidth.
The server will also reserve a certain percentage of the total bandwith for packets of certain prior-
ities. Techniques similar to those used in modern TCP implementations are used to dynamically
adjust the bandwith limit to players based on their connection quality.

8 Regions and Extended LVL Files

asss supports an extention to the classic map file format. The extension format is mostly
backwards-compatible, so extended lvl files should work with any program that supports classic
lvl files.

Extended lvl files can contain various types of additional data. The simplest is a list of text
attributes about the map, such as a name, a version, the map and tileset creators, and the
programs used to create it. This data can be viewed with the ?mapinfo command.

The other important data that extended lvl files can contain, that asss uses for new func-
tionality, is regions.

8.1 What are regions?

A “region” is a named set of tiles, with optional assocated attributes. The tiles in a region can
be an arbitrary set, and don’t have to be in a certain shape or be connected (although things
are more efficient if they are). A region has a name, which can be used to refer to it from a
module (the details of how to do this are in the developer’s guide, or at least will be eventually).
Regions can also have several attributes which are interpreted by asss itself.

8.2 Region attributes

Currently supported region attribute are: no-antiwarp, no-weapons, no-flags, and autowarp. If a
region has the no-antiwarp attribute, the server will clear the antiwarp bit of any players in that
region, effectively disabling their antiwarp (although it will appear to them that their antiwarp
is still on; you should consider this when designing a zone using this feature). The no-weapons
attribute means that the server will ignore weapons from players in the region, although again,
the players themselves will still see their own weapons on their screen. The no-flags attribute
prevents flags from being dropped in that region. The autowarp attribute (which requires the
autowarp module to function) will automatically move a player to a different location, optionally
in a different arena, when the region is entered.

11

8.3 Making extended lvl files

lvltool, which is available on the asss web site, is a simple command-line tool to manipulate
extended lvl files. It’s more of a proof-of-concept than a useful tool, although if you put enough
effort in, you can use it to create arbitrary extended lvl files.

The “Continuum Level / Ini Tool,” version 1-1-05 or later, is a graphical map editor, written
in Java, that also supports creating extended lvl files.

9 Virtual Servers

asss allows one server process to apear to clients as several different servers. The primary
advantage of this feature is that players connecting to all virtual servers are treated the same
internally and can move between arenas and communicate as if they connected to the same
server.

To create virtual servers, you have to tell the net module to listen on more than one port.
You do this by creating additional sections in global.conf named “Listen1,” “Listen2,” etc.
Each setting must specify a port, and can also optionally specify a virtual server identifier, and
a specific IP address to bind to.

Virtual server identifiers are used in several ways: if you are using an arena placing module
that supports them (e.g., ap_multipub), the server id will be used as the arena basename to
place players who connect through that port in.

The directory module also supports virtual servers: it will create one directory entry for
each virtual server. The server name and description can be different for each virtual server. To
specify them, create “Name” and “Description” settings in the section “Directory-servername”
for each virtual server identifier. If either of those settings is missing from that section, it will
fall back to their values in the “Directory” section.

Finally, an example to make this all clear:

;; global.conf

;; listen on 3 different ports:

; players connecting to port 2000 will be send to a random arena.

[Listen1]

Port = 2000

; players who connect to 5000 will be sent to pb1, pb2, etc.

[Listen2]

Port = 5000

ConnectAs = pb

; port 7500 will send them to aswz by default, and so on.

[Listen3]

Port = 7500

ConnectAs = aswz

; this will force the server to listen on an internal interface only

; and send those players to a secret arena:

[Listen4]

BindAddress = 192.168.0.23

Port = 3300

ConnectAs = #secret

[Directory]

;; point to the directory servers you want to be listed on. using

12

;; default port and password.

Server1 = sscentral.one.com

Server2 = sscentral.two.com

;; now describe what this server is called by default:

Name = A Testing Zone

Description = Testing happens here.

[Directory-pb]

;; specify the name and description for pb:

Name = PowerBall

Description = Play with balls!

[Directory-aswz]

;; specify only name for aswz:

Name = A Small Warzone

10 Using dbtool

FIXME!

11 Command Reference

These are all of the commands that the server currently recognizes. Not all of them will always
be available. If a command requires a module that’s not one of the core modules, that will be
indicated above its description. Most other commands require the playercmd module.

Possible targets are listed for each command. The targets can be “none,” which refers to
commands typed as public (arena) messages, “player,” for commands that can target specific
players, “freq,” for commands that can target a whole freq at a time (with either ’ or "), or
some restriction of one of those.

Each command also describes any required or optional arguments.
Note that the section doesn’t list who is allowed to run a particular command, because that is

determined by the capability manager, which can be fully customized for each particular server.

a

Possible targets: player, freq, or arena
Arguments: <text>
Displays the text as an arena (green) message to the targets.

aa

Possible targets: player, freq, or arena
Arguments: <text>
Displays the text as an anonymous arena (green) message to the targets.

acceptfile

Requires module: sendfile

Possible targets: none
Arguments: none
Accept a file that has been offered to you.

13

addallowed

Requires module: auth file

Possible targets: none
Arguments: <player name>
Adds a player to passwd.conf with no set password. This will allow them to log in when
AllowUnknown is set to false, and has no use otherwise.

admlogfile

Possible targets: none
Arguments: flush or reopen
Administers the log file that the server keeps. There are two possible subcommands: flush

flushes the log file to disk (in preparation for copying it, for example), and reopen tells the
server to close and re-open the log file (to rotate the log while the server is running).

alias

Requires module: aliasdb

Possible targets: player or none
Arguments: [<name>]
Queries the alias database for players matching from the name, ip, or macid of the target. Only
works on MySQL 4 or later.

arena

Possible targets: none
Arguments: [-a] [-t]
Lists the available arenas. Specifying -a will also include empty arenas that the server knows
about. The -t switch forces the output to be in text even for regular clients (useful when using
the Continuum chat window).

attmod

Possible targets: none
Arguments: [-d] <module name>
Attaches the specified module to this arena. Or with -d, detaches the module from the arena.

az

Possible targets: none
Arguments: <text>
Displays the text as an anonymous arena (green) message to the whole zone.

ballcount

Possible targets: none
Arguments: [<new # of balls> | +<balls to add> | -<balls to remove>]
Displays or changes the number of balls in the arena. A number without a plus or minus sign
is taken as a new count. A plus signifies adding that many, and a minus removes that many.
Continuum currently supports only eight balls.

botfeature

Possible targets: none
Arguments: [+/-seeallposn] [+/-seeownposn]

14

Enables or disables bot-specific features. seeallposn controls whether the bot gets to see all
position packets. seeownposn controls whether you get your own mirror position packets.

bounty

Possible targets: Player
Syntax: /?bounty <points> Set a bounty on another player.

cancelfile

Requires module: sendfile

Possible targets: none
Arguments: none
Withdraw your previously offered files.

cd

Possible targets: none
Arguments: [<server directory>]
Changes working directory for file transfer. Note that the specified path must be an absolute
path; it is not considered relative to the previous working directory. If no arguments are specified,
return to the server’s root directory.

cheater

Possible targets: none
Arguments: <message>
Sends the message to all online staff members.

delfile

Possible targets: none
Arguments: <server pathname>
Delete a file from the server. Paths are relative to the current working directory.

delmidban

Requires module: auth ban

Possible targets: none
Arguments: <machine id>

Removes a machine id ban.

destroy

Possible targets: Player
Syntax: /?destroy Simulates the player getting killed.

disablecmdgroup

Possible targets: none
Arguments: <command group>

Disables all the commands in the specified command group and released the modules that they
require. This can be used to release interfaces so that modules can be unloaded or upgraded
without unloading playercmd (which would be irreversible).

15

dropturret

Requires module: autoturret

Possible targets: none
Arguments: none
Drops a turret right where your ship is. The turret will fire 10 level 1 bombs, 1.5 seconds apart,
and then disappear.

enablecmdgroup

Possible targets: none
Arguments: <command group>

Enables all the commands in the specified command group. This is only useful after using
?disablecmdgroup.

endinterval

Possible targets: none
Arguments: [-g] [-a <arena group name>] <interval name>
Causes the specified interval to be reset. If -g is specified, reset the interval at the global scope.
If -a is specified, use the named arena group. Otherwise, use the current arena’s scope. Interval
names can be g̈amë, r̈eseẗ, or m̈aprotation̈.

energy

Possible targets: arena or player
Arguments: [-t] [-n] [-s]
If sent as a priv message, turns energy viewing on for that player. If sent as a pub message,
turns energy viewing on for the whole arena (note that this will only affect new players entering
the arena). If -t is given, turns energy viewing on for teammates only. If -n is given, turns
energy viewing off. If -s is given, turns energy viewing on/off for spectator mode.

find

Possible targets: none
Arguments: <all or part of a player name>
Tells you where the specified player is right now. If you specify only part of a player name, it
will try to find a matching name using a case insensitive substring search.

flaginfo

Possible targets: none
Arguments: none
Displays information (status, location, carrier) about all the flags in the arena.

flagreset

Possible targets: none
Arguments: none
Causes the flag game to immediately reset.

forceding

Requires module: turf reward

Possible targets: none
Arguments: none
Forces a reward to take place immediately in your current arena.

16

forcestats

Requires module: turf stats

Possible targets: none
Arguments: none
Displays stats to arena for previous dings.

freqkick

Requires module: freqowners

Possible targets: player
Arguments: none
Kicks the player off of your freq. The player must be on your freq and must not be an owner
himself. The player giving the command, of course, must be an owner.

freqpwd

Requires module: fm password

Possible targets: none
Arguments: <password>

Sets a password for your freq. Public freqs and the spec freq cannot have passwords.

gamerecord

Requires module: record

Possible targets: none
Arguments: status | record <file> | play <file> | pause | restart | stop
TODO: write more here.

geta

Possible targets: none
Arguments: section:key
Displays the value of an arena setting. Make sure there are no spaces around the colon.

getcm

Possible targets: player or arena
Arguments: none
Prints out the chat mask for the target player, or if no target, for the current arena. The chat
mask specifies which types of chat messages are allowed.

getfile

Possible targets: none
Arguments: <filename>
Transfers the specified file from the server to the client. The filename is considered relative to
the current working directory.

getg

Possible targets: none
Arguments: section:key
Displays the value of a global setting. Make sure there are no spaces around the colon.

17

getgroup

Possible targets: player or none
Arguments: none
Displays the group of the player, or if none specified, you.

giveowner

Requires module: freqowners

Possible targets: player
Arguments: none
Allows you to share freq ownership with another player on your current private freq. You can’t
remove ownership once you give it out, but you are safe from being kicked off yourself, as long
as you have ownership.

grplogin

Possible targets: none
Arguments: <group name> <password>

Logs you in to the specified group, if the password is correct.

help

Possible targets: none
Arguments: <command name> | <setting name (section:key)>
Displays help on a command or config file setting. Use ?help section: to list known keys in
that section. Use ?help : to list known section names.

info

Possible targets: player
Arguments: none
Displays various information on the target player, including which client they are using, their
resolution, IP address, how long they have been connected, and bandwidth usage information.

insmod

Possible targets: none
Arguments: <module specifier>
Immediately loads the specified module into the server.

jackpot

Possible targets: none
Arguments: none or <arena name> or all
Displays the current jackpot for this arena, the named arena, or all arenas.

joinpwd

Requires module: fm password

Possible targets: none
Arguments: <password>

Sets your joining password, which will be used to check if you can join password-protected freqs.

18

kick

Requires module: auth ban

Possible targets: player
Arguments: [<timeout>]
Kicks the player off of the server, with an optional timeout (in minutes).

lag

Possible targets: none or player
Arguments: [-v]
Displays lag information about you or a target player. Use -v for more detail. The format of
the ping fields is l̈ast average (min-max)̈.

laghist

Possible targets: none or player
Arguments: [-r]
Displays lag histograms. If a -r is given, do this histogram for r̈eliablëlatency instead of c2s
pings.

last

Possible targets: none
Arguments: none
Tells you the last 10 people to log in.

lastlog

Requires module: log sysop

Possible targets: none or player
Arguments: [<number of lines>] [<limiting text>]
Displays the last <number> lines in the server log (default: 10). If limiting text is specified,
only lines that contain that text will be displayed. If a player is targeted, only lines mentioning
that player will be displayed.

listarena

Possible targets: none
Arguments: <arena name>
Lists the players in the given arena.

listmidbans

Requires module: auth ban

Possible targets: none
Arguments: none
Lists the current machine id bans in effect.

listmod

Possible targets: none
Arguments: none
Lists all staff members logged on, which arena they are in, and which group they belong to.

19

local password

Requires module: auth file

Possible targets: none
Arguments: <new password>

Changes your local server password. Note that this command only changes the password used
by the auth file authentication mechanism (used when the billing server is disconnected. This
command does not involve the billing server.

lock

Possible targets: player, freq, or arena
Arguments: [-n] [-s] [-t <timeout>]
Locks the specified targets so that they can’t change ships. Use ?unlock to unlock them. By
default, ?lock won’t change anyone’s ship. If -s is present, it will spec the targets before locking
them. If -n is present, it will notify players of their change in status. If -t is present, you can
specify a timeout in seconds for the lock to be effective.

lockarena

Possible targets: arena
Arguments: [-n] [-a] [-i] [-s]
Changes the default locked state for the arena so entering players will be locked to spectator
mode. Also locks everyone currently in the arena to their ships. The -n option means to notify
players of their change in status. The -a options means to only change the arena’s state, and
not lock current players. The -i option means to only lock entering players to their initial ships,
instead of spectator mode. The -s means to spec all players before locking the arena.

lsmod

Possible targets: none
Arguments: [-a] [-s] [<text>]
Lists all the modules currently loaded into the server. With -a, lists only modules attached
to this arena. With -s, sorts by name. With optional text, limits modules displayed to those
whose names contain the given text.

makearena

Possible targets: none
Arguments: <arena name>
Creates a directory for the new directory under ’arenas/’

mapinfo

Possible targets: none
Arguments: none
Displays some information about the map in this arena.

mark

Possible targets: Player, Arena
Syntax: /?mark, ?mark <player>, ?mark (list only) Marks player in purple on your radar.

20

modinfo

Possible targets: none
Arguments: <module name>
Displays information about the specified module. This might include a version number, contact
information for the author, and a general description of the module.

moveflag

Possible targets: none
Arguments: <flag id> <owning freq> [<x coord> <y coord>]
Moves the specified flag. You must always specify the freq that will own the flag. The coordinates
are optional: if they are specified, the flag will be moved there, otherwise it will remain where
it is.

netstats

Possible targets: none
Arguments: none
Prints out some statistics from the network layer.

neutflag

Possible targets: none
Arguments: <flag id>

Neuts the specified flag in the middle of the arena.

objimage

Possible targets: any
Arguments: <id> <image>
Change the image associated with an object id. Object commands: ?objon ?objoff ?objset
?objmove ?objimage ?objlayer ?objtimer ?objmode ?objinfo ?objlist

objinfo

Possible targets: none
Arguments: <id>

Reports all known information about the object. Object commands: ?objon ?objoff ?objset
?objmove ?objimage ?objlayer ?objtimer ?objmode ?objinfo ?objlist

objlayer

Possible targets: any
Arguments: <id> <layer code>
Change the image associated with an object id. Layer codes: BelowAll AfterBackground Af-
terTiles AfterWeapons AfterShips AfterGauges AfterChat TopMost Object commands: ?objon
?objoff ?objset ?objmove ?objimage ?objlayer ?objtimer ?objmode ?objinfo ?objlist

objlist

Possible targets: none
Arguments: none
List all ServerControlled object id’s. Use ?objinfo <id> for attributes Object commands: ?objon
?objoff ?objset ?objmove ?objimage ?objlayer ?objtimer ?objmode ?objinfo ?objlist

21

objmode

Possible targets: any
Arguments: <id> <mode code>
Change the mode associated with an object id. Mode codes: ShowAlways EnterZone EnterArena
Kill Death ServerControlled Object commands: ?objon ?objoff ?objset ?objmove ?objimage
?objlayer ?objtimer ?objmode ?objinfo ?objlist

objmove

Possible targets: any
Arguments: <id> <x> <y> (for map obj) or <id> [CBSGFETROWV]<0/1> [CBSGFETROWV]<0/1>
(screen obj)
Moves an LVZ map or screen object. Coordinates are in pixels. Object commands: ?objon
?objoff ?objset ?objmove ?objimage ?objlayer ?objtimer ?objmode ?objinfo ?objlist

objoff

Possible targets: any
Arguments: object id
Toggles the specified object off. Object commands: ?objon ?objoff ?objset ?objmove ?objimage
?objlayer ?objtimer ?objmode ?objinfo ?objlist

objon

Possible targets: any
Arguments: object id
Toggles the specified object on. Object commands: ?objon ?objoff ?objset ?objmove ?objimage
?objlayer ?objtimer ?objmode ?objinfo ?objlist

objset

Possible targets: any
Arguments: [+/-]object id [+/-]id ...
Toggles the specified objects on/off. Object commands: ?objon ?objoff ?objset ?objmove ?ob-
jimage ?objlayer ?objtimer ?objmode ?objinfo ?objlist

objtimer

Possible targets: any
Arguments: <id> <timer>
Change the timer associated with an object id. Object commands: ?objon ?objoff ?objset
?objmove ?objimage ?objlayer ?objtimer ?objmode ?objinfo ?objlist

obscene

Possible targets: none
Arguments: none
Toggles the obscene word filter.

owner

Possible targets: none
Arguments: none
Displays the arena owner.

22

pausetimer

Possible targets: none
Arguments: none
Toggles the timer between paused and unpaused. The timer must have been created with ?timer.

points

Possible targets: any
Arguments: <points to add>

Adds the specified number of points to the targets’ flag points.

prize

Possible targets: player, freq, or arena
Arguments: see description
Gives the specified prizes to the target player(s).

Prizes are specified with an optional count, and then a prize name (e.g. 3 reps, anti).
Negative prizes can be specified with a ’-’ before the prize name or the count (e.g. -prox, -3
bricks, 5 -guns). More than one prize can be specified in one command. A count without a
prize name means random. For compatability, numerical prize ids with # are supported.

putfile

Possible targets: none
Arguments: <client filename>[:<server filename>]
Transfers the specified file from the client to the server. The server filename, if specified, will be
considered relative to the current working directory. If omitted, the uploaded file will be placed
in the current working directory and named the same as on the client.

putmap

Possible targets: none
Arguments: <map file>
Transfers the specified map file from the client to the server. The map will be placed in
maps/uploads/<arenabasename>.lvl, and the setting General:Map will be changed to the name
of the uploaded file.

putzip

Possible targets: none
Arguments: <client filename>[:<server directory>]
Uploads the specified zip file to the server and unzips it in the specified directory (considered
relative to the current working directory), or if none is provided, the working directory itself.
This can be used to efficiently send a large number of files to the server at once, while preserving
directory structure.

pwd

Possible targets: none
Arguments: none
Prints the current working directory. A working directory of .̈̈ındicates the server’s root directory.

23

py

Requires module: <py> exec

Possible targets: any
Arguments: <python code>
Executes arbitrary python code. The code runs in a namespace containing all of the asss module,
plus three helpful preset variables: me is yourself, t is the target of the command, and a is the
current arena. You can write multi-line statements by separating lines with semicolons (be sure
to get the indentation correct). Output written to stdout (e.g., with print) is captured and
displayed to you, as are any exceptions raised in your code.

qip

Possible targets: none
Arguments: <ip address or pattern>

Queries the alias database for players connecting from that ip. Queries can be an exact addreess,
?qip 216.34.65.%, or ?qip 216.34.65.0/24.

quickfix

Requires module: quickfix

Possible targets: none
Arguments: <limiting text>
Lets you quickly change arena settings. This will display some list of settings with their current
values and allow you to change them. The argument to this command can be used to limit the
list of settings displayed. (With no arguments, equivalent to ?getsettings in subgame.)

rawquery

Possible targets: none
Arguments: <sql code>
Performs a custom sql query on the alias data. The text you type after ?rawquery will be used
as the WHERE clause in the query. Examples: ?rawquery name like ’%blah%’ ?rawquery macid
= 34127563 order by lastseen desc

recyclearena

Possible targets: none
Arguments: none
Recycles the current arena without kicking players off.

redirect

Possible targets: any
Arguments: <redirect alias> | <ip>:<port>[:<arena>]
Requires module: redirect

Redirects the target to a different zone.

reloadconf

Possible targets: none
Arguments: [-f] [path]
With no args, causes the server to reload any config files that have been modifed since they were
loaded. With -f, forces a reload of all open files. With a string, forces a reload of all files whose
pathnames contain that string.

24

renfile

Possible targets: none
Arguments: <old filename>:<new filename>
Rename a file on the server. Paths are relative to the current working directory.

resetgame

Possible targets: none
Arguments: none
Resets soccer game scores and balls.

rmgroup

Possible targets: player
Arguments: none
Removes the group from a player, returning him to group ’default’. If the group was assigned
for this session only, then it will be removed for this session; if it is a global group, it will be
removed globally; and if it is an arena group, it will be removed for this arena.

rmmod

Possible targets: none
Arguments: <module name>
Attempts to unload the specified module from the server.

score

Possible targets: none
Arguments: none
Returns current score of the soccer game in progress.

scorereset

Possible targets: none or player
Arguments: none
Resets your own score, or the target player’s score.

send

Possible targets: player
Arguments: <arena name>
Sends target player to the named arena. (Works on Continuum users only.)

sendfile

Requires module: sendfile

Possible targets: player
Arguments: none
Offer someone a file from your client’s directory. Only one file can be offered at once.

set local password

Requires module: auth file

Possible targets: player
Arguments: none

25

If used on a player that has no local password set, it will set their local password to the password
they used to log in to this session.

seta

Possible targets: none
Arguments: [-t] section:key=value
Sets the value of an arena setting. Make sure there are no spaces around either the colon or the
equals sign. A -t makes the setting temporary.

setcm

Possible targets: player or arena
Arguments: see description
Modifies the chat mask for the target player, or if no target, for the current arena. The arguments
must all be of the form (-|+)(pub|pubmacro|freq|nmefreq|priv|chat|modchat|all) or -time

<seconds>. A minus sign and then a word disables that type of chat, and a plus sign enables
it. The special type all means to apply the plus or minus to all of the above types. -time lets
you specify a timeout in seconds. The mask will be effective for that time, even across logouts.

Examples:

• If someone is spamming public macros: :player:?setcm -pubmacro -time 600

• To disable all blue messages for this arena: ?setcm -pub -pubmacro

• An equivalent to *shutup: :player:?setcm -all

• To restore chat to normal: ?setcm +all

Current limitations: You can’t currently restrict a particular frequency. Leaving and entering
an arena will remove a player’s chat mask, unless it has a timeout.

setfreq

Possible targets: player, freq, or arena
Arguments: <freq number>
Moves the targets to the specified freq.

setg

Possible targets: none
Arguments: [-t] section:key=value
Sets the value of a global setting. Make sure there are no spaces around either the colon or the
equals sign. A -t makes the setting temporary.

setgroup

Possible targets: player
Arguments: [-a] [-p] <group name>
Assigns the group given as an argument to the target player. The player must be in group
default, or the server will refuse to change his group. Additionally, the player giving the
command must have an appropriate capability: setgroup foo, where foo is the group that he’s
trying to set the target to.

The optional -p means to assign the group permanently. Otherwise, when the target player
logs out or changes arenas, the group will be lost.

The optional -a means to make the assignment local to the current arena, rather than being
valid in the entire zone.

26

setjackpot

Possible targets: none
Arguments: <new jackpot value>
Sets the jackpot for this arena to a new value.

setscore

Possible targets: none
Arguments: <freq 0 score> [<freq 1 score> [... [<freq 7 score>]]]
Changes score of current soccer game, based on arguments. Only supports first eight freqs, and
arena must be in absolute scoring mode (Soccer:CapturePoints < 0).

setship

Possible targets: player, freq, or arena
Arguments: <ship number>
Sets the targets to the specified ship. The argument must be a number from 1 (Warbird) to 8
(Shark), or 9 (Spec).

shipreset

Possible targets: player, freq, or arena
Arguments: none
Resets the target players’ ship(s).

shutdown

Possible targets: none
Arguments: [-r]
Immediately shuts down the server, exiting with EXIT NONE. If -r is specified, exit with EXIT RECYCLE

instead. The run-asss script, if it is being used, will notice EXIT RECYCLE and restart the server.

spec

Possible targets: any
Arguments: none
Displays players spectating you. When private, displays players spectating the target.

specall

Possible targets: player, freq, or arena
Arguments: none
Sends all of the targets to spectator mode.

stats

Possible targets: player or none
Arguments: [forever|game|reset]
Prints out some basic statistics about the target player, or if no target, yourself. An interval
name can be specified as an argument. By default, the per-reset interval is used.

27

takeownership

Requires module: freqowners

Possible targets: none
Arguments: none
Makes you become owner of your freq, if your freq doesn’t have an owner already.

time

Possible targets: none
Arguments: none
Returns amount of time left in current game.

timer

Possible targets: none
Arguments: <minutes>[:<seconds>]
Set arena timer to minutes:seconds, only in arenas with TimedGame setting off. Note, that the
seconds part is optional, but minutes must always be defined (even if zero). If successful, server
replies with ?time response.

timereset

Possible targets: none
Arguments: none
Reset a timed game, but only in arenas with Misc:TimedGame in use.

turfinfo

Requires module: turf reward

Possible targets: none
Arguments: none
Displays the current settings / requirements to recieve awards.

turfresetflags

Requires module: turf reward

Possible targets: none
Arguments: none
Resets the turf reward module’s and flags module’s flag data in your current arena.

turfresettimer

Requires module: turf reward

Possible targets: none
Arguments: none
Resets the ding timer in your current arena.

turfstats

Requires module: turf stats

Possible targets: none
Arguments: none
Gets stats to previous dings.

28

turftime

Requires module: turf reward

Possible targets: none
Arguments: none
Displays the amount of time till next ding.

unlock

Possible targets: player, freq, or arena
Arguments: [-n]
Unlocks the specified targets so that they can now change ships. An optional -n notifies players
of their change in status.

unlockarena

Possible targets: arena
Arguments: [-n] [-a]
Changes the default locked state for the arena so entering players will not be locked to spectator
mode. Also unlocks everyone currently in the arena to their ships The -n options means to
notify players of their change in status. The -a option means to only change the arena’s state,
and not unlock current players.

unmark

Possible targets: Player, Arena
Syntax: /?unmark, ?unmark <player> Removes mark on a player.

uptime

Possible targets: none
Arguments: none
Displays how long the server has been running.

usage

Possible targets: player or none
Arguments: none
Displays the usage information (current hours and minutes logged in, and total hours and min-
utes logged in), as well as the first login time, of the target player, or you if no target.

userdbadm

Possible targets: none
Arguments: status|drop|connect
The subcommand ’status’ reports the status of the user database server connection. ’drop’
disconnects the connection if it’s up, and ’connect’ reconnects after dropping or failed login.

userdbid

Possible targets: player or none
Arguments: none
Displays the user database server id of the target player, or yours if no target.

29

userid

Possible targets: player or none
Arguments: none
Displays the user database id of the target player, or yours if no target.

version

Possible targets: none
Arguments: none
Prints out the version and compilation date of the server. It might also print out some informa-
tion about the machine that it’s running on.

warn

Possible targets: player
Arguments: <message>
Send a red warning message to a player.

warpto

Possible targets: player, freq, or arena
Arguments: <x coord> <y coord>

Warps target player to coordinate x,y.

watchdamage

Possible targets: player, none
Arguments: [0 or 1]
Turns damage watching on and off. If sent to a player, an argument of 1 turns it on, 0 turns it
off, and no argument toggles. If sent as a public command, only ?watchdamage 0 is meaningful,
and it turns off damage watching on all players.

watchgreen

Requires module: <py> watchgreen

Possible targets: player or arena
Arguments: none
If send to a player, turns on green watching for that player. If sent as a public message, turns
off all your green watching.

where

Possible targets: player
Arguments: none
Displays the current location (on the map) of the target player.

z

Possible targets: none
Arguments: <text>
Displays the text as an arena (green) message to the whole zone.

30

zone

Possible targets: none
Arguments: none
Displays the name of this zone.

12 Configuration Reference

All config files used by asss (except modules.conf) have the same format and conventions. The
format is roughly based on, and is backwards compatible with, the Windows .ini file format,
so server.cfg files can be used as-is, although you’ll probably need to add a few settings to get
things working well.

Config files are processed line-by-line. All leading and trailing whitespace is ignored. A line
is a comment if the first character (ignoring whitespace) is a semicolon or a forward slash. If
the first character is a pound sign, it signals a preprocessor directive. These directives work
very much like C preprocessor directives: #include allows one config file to include another.
#define allows macros to be defined. Macros cannot currently take arguments. To reference
the definition of a macro, you have to use $(MACRONAME), not just the name of the macro. The
parens can be omitted if the character after the end of the macro name isn’t alphanumeric.
#ifdef, #ifndef, #else, and #endif allow conditional inclusion of sections based on whether
a specific macro is defined or not. If a line ends with a backslash, it denotes a line continuation:
the following line of the file (or more if that line ends with a backslash) is appended to the
original line before it is processed.

The start of a section is a line starting with an open bracket and ending with a closing
bracket. The text between the brackets is the section name. Any line containing an equals sign
is a value: the text before the equals is the key name (minus leading and trailing whitespace)
and the text after (again minus whitespace) is the value. Section names and values are case-
insensitive, but the case of values is preserved. Lines that don’t contain an equals sign also
specify keys, and their associated value is the empty string. Value-less keys are used primarily
in the capability manager, where the presence or absence of a capability is all that’s important.

If a key name contains a colon, it is treated specially: the text before the colon is treated as
the section name for this key only (it doesn’t modify the idea of the “current section”) and the
text after the colon is the key name.

The following sections describe specific settings. They are sorted alphabetically by section
and then by key. The settings are listed with the section and key names separated by a colon.
The section name “All” isn’t a real section name but means the setting is present in a section
for each ship.

12.1 Global settings

Billing:GroupID
Type: Integer
Default: 1
GroupID identifying zone to user database server.

Billing:IP
Type: String
The ip address of the user database server (no dns hostnames allowed).

Billing:LocalChatPrefix
Type: String
Secret prefix to prepend to local chats

Billing:Password
Type: String

31

The password to log in to the user database server with.

Billing:Port
Type: Integer
Default: 1850
The port to connect to on the user database server.

Billing:Proxy
Type: String
This setting allows you to specify an external program that will handle the billing server con-
nection. The program should be prepared to speak the asss billing protocol over its standard
input and output. It will get two command line arguments, which are the ip and port of the
billing server, as specified in the Billing:IP and Billing:Port settings. The program name should
either be an absolute pathname or be located on your $PATH.

Billing:RetryInterval
Type: Integer
Default: 180
How many seconds to wait between tries to connect to the user database server.

Billing:ScoreID
Type: Integer
Default: 0
Score realm.

Billing:ServerID
Type: Integer
Default: 0
ServerID identifying zone to user database server.

Billing:ServerName
Type: String
The server name to send to the user database server.

Billing:ServerNetwork
Type: String
The network name to send to the billing server. A network name should identify a group of
servers (e.g., SSCX).

Billing:StaffChatPrefix
Type: String
Secret prefix to prepend to staff chats

Billing:StaffChats
Type: String
Comma separated staff zone local list.

Chat:CommandLimit
Type: Integer
Default: 5
How many commands are allowed on a single line.

Chat:FilterMode
Type: Other
If true, replace obscene words with garbage characters, otherwise suppress whole line.

Chat:FloodLimit

32

Type: Integer
Default: 10
How many messages needed to be sent in a short period of time (about a second) to qualify for
chat flooding.

Chat:FloodShutup
Type: Integer
Default: 60
How many seconds to disable chat for a player that is flooding chat messages.

Chat:ForceFilter
Type: Other
If true, players will always start with the obscenity filter on by default. If false, use their
preference.

Chat:MessageReliable
Type: Boolean
Default: Yes
Whether to send chat messages reliably.

Chat:Obscene
Type: String
A space-separated list of obscene words to filter. Words starting with a question mark are
encoded with rot-13.

Config:CheckModifiedFilesInterval
Type: Integer
Default: 1500
How often to check for modified config files on disk (in ticks).

Config:FlushDirtyValuesInterval
Type: Integer
Default: 500
How often to write modified config settings back to disk (in ticks).

Directory:Description
Type: String
The server description to send to the directory server. See Directory:Name for more information
about the section name.

Directory:Name
Type: String
The server name to send to the directory server. Virtual servers will use section name ’Directory-
<vs-name>’ for this and other settings in this section, and will fall back to ’Directory’ if that
section doesn’t exist. See Net:Listen help for how to identify virtual servers.

Directory:Password
Type: String
Default: cane
The password used to send information to the directory server. Don’t change this.

Directory:Port
Type: Integer
Default: 4991
The port to connect to for the directory server.

General:NewsFile

33

Type: String
Default: news.txt
The filename of the news file.

General:NewsRefreshMinutes
Type: Integer
Default: 5
How often to check for an updated news.txt.

General:PublicArenas
Type: String
Requires module: ap multipub

A list of public arena types that the server will place people in when they don’t request a specific
arena.

General:ShipChangeLimit
Type: Integer
Default: 10
The number of ship changes in a short time (about 10 seconds) before ship changing is disabled
(for about 30 seconds).

Lag:CheckInterval
Type: Integer
Default: 300
How often to check each player for out-of-bounds lag values (in ticks).

Listen:AllowCont
Type: Boolean
Default: Yes
Whether Continuum clients are allowed to connect to this port.

Listen:AllowVIE
Type: Boolean
Default: Yes
Whether VIE protocol clients (i.e., Subspace 1.34 and bots) are allowed to connect to this port.

Listen:BindAddress
Type: String
The interface address to bind to. This is optional, and if omitted, the server will listen on all
available interfaces.

Listen:ConnectAs
Type: String
This setting allows you to treat clients differently depending on which port they connect to. It
serves as a virtual server identifier for the rest of the server. The standard arena placement
module will use this as the name of a default arena to put clients who connect through this port
in.

Listen:Port
Type: Integer
The port that the game protocol listens on. Sections named Listen1 through Listen9 are also
supported. All Listen sections must contain a port setting.

Log:FileFlushPeriod
Type: Integer
Default: 10
How often to flush the log file to disk (in minutes).

34

Log:LogFile
Type: String
Default: asss.log
The name of the log file.

mysql:database
Type: String
Requires module: mysql

The database on the mysql server to use.

mysql:hostname
Type: String
Requires module: mysql

The name of the mysql server.

mysql:password
Type: String
Requires module: mysql

The password to log in to the mysql server as.

mysql:user
Type: String
Requires module: mysql

The mysql user to log in to the server as.

Net:AntiwarpSendPercent
Type: Integer
Default: 5
Percent of position packets with antiwarp enabled to send to the whole arena.

Net:BulletPixels
Type: Integer
Default: 1500
How far away to always send bullets (in pixels).

Net:ChatListen
Type: String
Requires module: chatnet

Where to listen for chat protocol connections. Either ’port’ or ’ip:port’. Net:Listen will be used
if this is missing.

Net:ChatMessageDelay
Type: Integer
Default: 20 mod: chatnet
The delay between sending messages to clients using the text-based chat protocol. (To limit
bandwidth used by non-playing cilents.)

Net:DropTimeout
Type: Integer
Default: 3000
How long to get no data from a client before disconnecting him (in ticks).

Net:Listen
Type: String
A designation for a port and ip to listen on. Format is one of ’port’, ’port:connectas’, or
’ip:port:connectas’. Listen1 through Listen9 are also supported. A missing or zero-length ’ip’
field means all interfaces. The ’connectas’ field can be used to treat clients differently depending

35

on which port or ip they use to connect to the server. It serves as a virtual server identifier for
the rest of the server.

Net:MaxOutlistSize
Type: Integer
Default: 200
How many S2C packets the server will buffer for a client before dropping him.

Net:PositionExtraPixels
Type: Integer
Default: 8000
How far away to send positions of players on radar.

Net:WeaponPixels
Type: Integer
Default: 2000
How far away to always send weapons (in pixels).

Persist:SyncSeconds
Type: Integer
Default: 180
The interval at which all persistent data is synced to the database.

Redirects:¡name¿
Type: String
Settings in the Redirects section correspond to arena names. If a player tries to ?go to an arena
name listed in this section, they will be redirected to the zone specified as the value of the
setting. The format of values is ’ip:port[:arena]’. */

Security:SecurityKickoff
Type: Boolean
Default: No
Whether to kick players off of the server for violating security checks.

12.2 Arena settings

All:AfterburnerEnergy
Type: Integer
Amount of energy required to have ’Afterburners’ activated

All:AntiWarpEnergy
Type: Integer
Amount of energy required to have ’Anti-Warp’ activated (thousanths per tick)

All:AntiWarpStatus
Type: Integer
Range: 0-2
Whether ships are allowed to receive ’Anti-Warp’ 0=no 1=yes 2=yes/start-with

All:AttachBounty
Type: Integer
Bounty required by ships to attach as a turret

All:BombBounceCount
Type: Integer
Number of times a ship’s bombs bounce before they explode on impact

36

All:BombFireDelay
Type: Integer
delay that ship waits after a bomb is fired until another weapon may be fired (in ticks)

All:BombFireEnergy
Type: Integer
Amount of energy it takes a ship to fire a single bomb

All:BombFireEnergyUpgrade
Type: Integer
Extra amount of energy it takes a ship to fire an upgraded bomb. i.e. L2 = BombFireEn-
ergy+BombFireEnergyUpgrade

All:BombSpeed
Type: Integer
How fast bombs travel

All:BombThrust
Type: Integer
Amount of back-thrust you receive when firing a bomb

All:BrickMax
Type: Integer
Maximum number of Bricks allowed in ships

All:BulletFireDelay
Type: Integer
Delay that ship waits after a bullet is fired until another weapon may be fired (in ticks)

All:BulletFireEnergy
Type: Integer
Amount of energy it takes a ship to fire a single L1 bullet

All:BulletSpeed
Type: Integer
How fast bullets travel

All:BurstMax
Type: Integer
Maximum number of Bursts allowed in ships

All:BurstShrapnel
Type: Integer
Number of bullets released when a ’Burst’ is activated

All:BurstSpeed
Type: Integer
How fast the burst shrapnel is for this ship

All:CloakEnergy
Type: Integer
Amount of energy required to have ’Cloak’ activated (thousanths per tick)

All:CloakStatus
Type: Integer
Range: 0-2
Whether ships are allowed to receive ’Cloak’ 0=no 1=yes 2=yes/start-with

37

All:DamageFactor
Type: Integer
How likely a the ship is to take damamage (ie. lose a prize) (0=special-case-never, 1=extremely
likely, 5000=almost never)

All:DecoyMax
Type: Integer
Maximum number of Decoys allowed in ships

All:DisableFastShooting
Type: Boolean
If firing bullets, bombs, or thors is disabled after using afterburners (1=enabled) (Cont .36+)

All:DoubleBarrel
Type: Boolean
Whether ships fire with double barrel bullets

All:EmpBomb
Type: Boolean
Whether ships fire EMP bombs

All:Gravity
Type: Integer
How strong of an effect the wormhole has on this ship (0 = none)

All:GravityTopSpeed
Type: Integer
Ship are allowed to move faster than their maximum speed while effected by a wormhole. This
determines how much faster they can go (0 = no extra speed)

All:InitialBombs
Type: Other
Range: 0-3
Initial level a ship’s bombs fire

All:InitialBounty
Type: Integer
Number of ’Greens’ given to ships when they start

All:InitialBrick
Type: Integer
Initial number of Bricks given to ships when they start

All:InitialBurst
Type: Integer
Initial number of Bursts given to ships when they start

All:InitialDecoy
Type: Integer
Initial number of Decoys given to ships when they start

All:InitialEnergy
Type: Integer
Initial amount of energy that the ship can have

All:InitialGuns
Type: Integer

38

Range: 0-3
Initial level a ship’s guns fire

All:InitialPortal
Type: Integer
Initial number of Portals given to ships when they start

All:InitialRecharge
Type: Integer
Initial recharge rate, or how quickly this ship recharges its energy

All:InitialRepel
Type: Integer
Initial number of Repels given to ships when they start

All:InitialRocket
Type: Integer
Initial number of Rockets given to ships when they start

All:InitialRotation
Type: Integer
Initial rotation rate of the ship (0 = can’t rotate, 400 = full rotation in 1 second)

All:InitialSpeed
Type: Integer
Initial speed of ship (0 = can’t move)

All:InitialThor
Type: Integer
Initial number of Thor’s Hammers given to ships when they start

All:InitialThrust
Type: Integer
Initial thrust of ship (0 = none)

All:LandmineFireDelay
Type: Integer
Delay that ship waits after a mine is fired until another weapon may be fired (in ticks)

All:LandmineFireEnergy
Type: Integer
Amount of energy it takes a ship to place a single L1 mine

All:LandmineFireEnergyUpgrade
Type: Integer
Extra amount of energy it takes to place an upgraded landmine. i.e. L2 = LandmineFireEn-
ergy+LandmineFireEnergyUpgrade

All:MaxBombs
Type: Integer
Range: 0-3
Maximum level a ship’s bombs can fire

All:MaxGuns
Type: Integer
Range: 0-3
Maximum level a ship’s guns can fire

39

All:MaximumEnergy
Type: Integer
Maximum amount of energy that the ship can have

All:MaximumRecharge
Type: Integer
Maximum recharge rate, or how quickly this ship recharges its energy

All:MaximumRotation
Type: Integer
Maximum rotation rate of the ship (0 = can’t rotate, 400 = full rotation in 1 second)

All:MaximumSpeed
Type: Integer
Maximum speed of ship (0 = can’t move)

All:MaximumThrust
Type: Integer
Maximum thrust of ship (0 = none)

All:MaxMines
Type: Integer
Maximum number of mines allowed in ships

All:MultiFireAngle
Type: Integer
Angle spread between multi-fire bullets and standard forward firing bullets (111 = 1 degree,
1000 = 1 ship-rotation-point)

All:MultiFireDelay
Type: Integer
Delay that ship waits after a multifire bullet is fired until another weapon may be fired (in ticks)

All:MultiFireEnergy
Type: Integer
Amount of energy it takes a ship to fire multifire L1 bullets

All:PortalMax
Type: Integer
Maximum number of Portals allowed in ships

All:PrizeShareLimit
Type: Integer
Maximum bounty that ships receive Team Prizes

All:Radius
Type: Integer
Default: 14
Range: 0-255
The ship’s radius from center to outside, in pixels. (Cont .37+)

All:RepelMax
Type: Integer
Maximum number of Repels allowed in ships

All:RocketMax
Type: Integer

40

Maximum number of Rockets allowed in ships

All:RocketTime
Type: Integer
How long a Rocket lasts (in ticks)

All:SeeBombLevel
Type: Integer
Range: 0-4
If ship can see bombs on radar (0=Disabled, 1=All, 2=L2 and up, 3=L3 and up, 4=L4 bombs
only)

All:SeeMines
Type: Boolean
Whether ships see mines on radar

All:ShieldsTime
Type: Integer
How long Shields lasts on the ship (in ticks)

All:ShrapnelMax
Type: Integer
Maximum amount of shrapnel released from a ship’s bomb

All:ShrapnelRate
Type: Integer
Amount of additional shrapnel gained by a ’Shrapnel Upgrade’ prize.

All:SoccerBallFriction
Type: Integer
Amount the friction on the soccer ball (how quickly it slows down – higher numbers mean faster
slowdown)

All:SoccerBallProximity
Type: Integer
How close the player must be in order to pick up ball (in pixels)

All:SoccerBallSpeed
Type: Integer
Initial speed given to the ball when fired by the carrier

All:SoccerThrowTime
Type: Integer
Time player has to carry soccer ball (in ticks)

All:StealthEnergy
Type: Integer
Amount of energy required to have ’Stealth’ activated (thousanths per tick)

All:StealthStatus
Type: Integer
Range: 0-2
Whether ships are allowed to receive ’Stealth’ 0=no 1=yes 2=yes/start-with

All:SuperTime
Type: Integer
How long Super lasts on the ship (in ticks)

41

All:ThorMax
Type: Integer
Maximum number of Thor’s Hammers allowed in ships

All:TurretLimit
Type: Integer
Number of turrets allowed on a ship

All:TurretSpeedPenalty
Type: Integer
Amount the ship’s speed is decreased with a turret riding

All:TurretThrustPenalty
Type: Integer
Amount the ship’s thrust is decreased with a turret riding

All:UpgradeEnergy
Type: Integer
Amount added per ’Energy Upgrade’ Prize

All:UpgradeRecharge
Type: Integer
Amount added per ’Recharge Rate’ Prize

All:UpgradeRotation
Type: Integer
Amount added per ’Rotation’ Prize

All:UpgradeSpeed
Type: Integer
Amount added per ’Speed’ Prize

All:UpgradeThrust
Type: Integer
Amount added per ’Thruster’ Prize

All:XRadarEnergy
Type: Integer
Amount of energy required to have ’X-Radar’ activated (thousanths per tick)

All:XRadarStatus
Type: Integer
Range: 0-2
Whether ships are allowed to receive ’X-Radar’ 0=no 1=yes 2=yes/start-with

Bomb:BBombDamagePercent
Type: Integer
Percentage of normal damage applied to a bouncing bomb (in 0.1%)

Bomb:BombAliveTime
Type: Integer
Time bomb is alive (in ticks)

Bomb:BombDamageLevel
Type: Integer
Amount of damage a bomb causes at its center point (for all bomb levels)

42

Bomb:BombExplodeDelay
Type: Integer
How long after the proximity sensor is triggered before bomb explodes

Bomb:BombExplodePixels
Type: Integer
Blast radius in pixels for an L1 bomb (L2 bombs double this, L3 bombs triple this)

Bomb:BombSafety
Type: Boolean
Whether proximity bombs have a firing safety. If enemy ship is within proximity radius, will it
allow you to fire

Bomb:EBombDamagePercent
Type: Integer
Percentage of normal damage applied to an EMP bomb (in 0.1%)

Bomb:EBombShutdownTime
Type: Integer
Maximum time recharge is stopped on players hit with an EMP bomb

Bomb:JitterTime
Type: Integer
How long the screen jitters from a bomb hit (in ticks)

Bomb:ProximityDistance
Type: Integer
Radius of proximity trigger in tiles (each bomb level adds 1 to this amount)

Brick:BrickMode
Type: Enumerated
Default: BRICK VIE
How bricks behave when they are dropped (BRICK VIE=improved vie style, BRICK AHEAD=drop
in a line ahead of player, BRICK LATERAL=drop laterally across player, BRICK CAGE=drop
4 bricks simultaneously to create a cage)

Brick:BrickSpan
Type: Integer
Default: 10
The maximum length of a dropped brick.

Brick:BrickTime
Type: Integer
How long bricks last (in ticks)

Brick:CountBricksAsWalls
Type: Boolean
Default: Yes
Whether bricks snap to the edges of other bricks (as opposed to only snapping to walls)

Bullet:BulletAliveTime
Type: Integer
How long bullets live before disappearing (in ticks)

Bullet:BulletDamageLevel
Type: Integer
Maximum amount of damage that a L1 bullet will cause

43

Bullet:BulletDamageUpgrade
Type: Integer
Amount of extra damage each bullet level will cause

Bullet:ExactDamage
Type: Boolean
Default: No
Whether to use exact bullet damage (Cont .36+)

Burst:BurstDamageLevel
Type: Integer
Maximum amount of damage caused by a single burst bullet

Chat:RestrictChat
Type: Integer
Default: 0
This specifies an initial chat mask for the arena. Don’t use this unless you know what you’re
doing.

Cost:AntiWarp
Type: Integer
Default: 0
Points cost for AntiWarp Ability. 0 to disallow purchase.

Cost:Bomb
Type: Integer
Default: 0
Points cost for Bomb Upgrade. 0 to disallow purchase.

Cost:Bounce
Type: Integer
Default: 0
Points cost for Bouncing Bullets. 0 to disallow purchase.

Cost:Brick
Type: Integer
Default: 0
Points cost for Brick. 0 to disallow purchase.

Cost:Burst
Type: Integer
Default: 0
Points cost for Burst. 0 to disallow purchase.

Cost:Cloak
Type: Integer
Default: 0
Points cost for Cloak Ability. 0 to disallow purchase.

Cost:Decoy
Type: Integer
Default: 0
Points cost for Decoy. 0 to disallow purchase.

Cost:Energy
Type: Integer
Default: 0

44

Points cost for Energy Upgrade. 0 to disallow purchase.

Cost:Gun
Type: Integer
Default: 0
Points cost for Gun Upgrade. 0 to disallow purchase.

Cost:MultiFire
Type: Integer
Default: 0
Points cost for MultiFire. 0 to disallow purchase.

Cost:Portal
Type: Integer
Default: 0
Points cost for Portal. 0 to disallow purchase.

Cost:Prox
Type: Integer
Default: 0
Points cost for Proximity Bombs. 0 to disallow purchase.

Cost:PurchaseAnytime
Type: Boolean
Default: No
Whether players can buy items outside a safe zone.

Cost:Recharge
Type: Integer
Default: 0
Points cost for Recharge Upgrade. 0 to disallow purchase.

Cost:Repel
Type: Integer
Default: 0
Points cost for Repel. 0 to disallow purchase.

Cost:Rocket
Type: Integer
Default: 0
Points cost for Rocket. 0 to disallow purchase.

Cost:Rotation
Type: Integer
Default: 0
Points cost for Rotation Upgrade. 0 to disallow purchase.

Cost:Shield
Type: Integer
Default: 0
Points cost for Shields. 0 to disallow purchase.

Cost:Shrap
Type: Integer
Default: 0
Points cost for Shrapnel Upgrade. 0 to disallow purchase.

45

Cost:Speed
Type: Integer
Default: 0
Points cost for Top Speed. 0 to disallow purchase.

Cost:Stealth
Type: Integer
Default: 0
Points cost for Stealth Ability. 0 to disallow purchase.

Cost:Super
Type: Integer
Default: 0
Points cost for Super. 0 to disallow purchase.

Cost:Thor
Type: Integer
Default: 0
Points cost for Thor. 0 to disallow purchase.

Cost:Thrust
Type: Integer
Default: 0
Points cost for Thrust Upgrade. 0 to disallow purchase.

Cost:XRadar
Type: Integer
Default: 0
Points cost for XRadar. 0 to disallow purchase.

Door:DoorDelay
Type: Integer
How often doors attempt to switch their state

Door:DoorMode
Type: Integer
Door mode (-2=all doors completely random, -1=weighted random (some doors open more often
than others), 0-255=fixed doors (1 bit of byte for each door specifying whether it is open or not)

Flag:CarryFlags
Type: Integer
Whether the flags can be picked up and carried (0=no, 1=yes, 2=yes-one at a time, 3=yes-two
at a time, 4=three, etc..)

Flag:DropCenter
Type: Boolean
Default: No
Whether flags dropped normally go in the center of the map, as opposed to near the player.

Flag:DropOwned
Type: Boolean
Default: Yes
Whether flags you drop are owned by your team.

Flag:DropRadius
Type: Integer
Default: 2

46

How far from a player do dropped flags appear (in tiles).

Flag:EnterGameFlaggingDelay
Type: Integer
Time a new player must wait before they are allowed to see flags

Flag:FlagBlankDelay
Type: Integer
Amount of time that a user can get no data from server before flags are hidden from view for
10 seconds

Flag:FlagCount
Type: Other
Default: 0
Range: 0-256
How many flags are present in this arena.

Flag:FlagDropDelay
Type: Integer
Time before flag is dropped by carrier (0=never)

Flag:FlagDropResetReward
Type: Integer
Minimum kill reward that a player must get in order to have his flag drop timer reset

Flag:FlaggerBombFireDelay
Type: Integer
Delay given to flaggers for firing bombs (zero is ships normal firing rate) (do not set this number
less than 20)

Flag:FlaggerBombUpgrade
Type: Boolean
Whether the flaggers get a bomb upgrade

Flag:FlaggerDamagePercent
Type: Integer
Percentage of normal damage received by flaggers (in 0.1%)

Flag:FlaggerFireCostPercent
Type: Integer
Percentage of normal weapon firing cost for flaggers (in 0.1%)

Flag:FlaggerGunUpgrade
Type: Boolean
Whether the flaggers get a gun upgrade

Flag:FlaggerKillMultiplier
Type: Integer
Number of times more points are given to a flagger (1 = double points, 2 = triple points)

Flag:FlaggerOnRadar
Type: Boolean
Whether the flaggers appear on radar in red

Flag:FlaggerSpeedAdjustment
Type: Integer
Amount of speed adjustment player carrying flag gets (negative numbers mean slower)

47

Flag:FlaggerThrustAdjustment
Type: Integer
Amount of thrust adjustment player carrying flag gets (negative numbers mean less thrust)

Flag:FlagReward
Type: Integer
Requires module: points flag

Default: 5000
The basic flag reward is calculated as (players in arena)2̂ * reward / 1000.

Flag:FriendlyTransfer
Type: Boolean
Default: Yes
Whether you get a teammates flags when you kill him.

Flag:NeutCenter
Type: Boolean
Default: No
Whether flags that are neut-droped go in the center, as opposed to near the player who dropped
them.

Flag:NeutOwned
Type: Boolean
Default: No
Whether flags you neut-drop are owned by your team.

Flag:NoDataFlagDropDelay
Type: Integer
Amount of time that a user can get no data from server before flags he is carrying are dropped

Flag:ResetDelay
Type: Integer
Default: 0
The length of the delay between flag games.

Flag:SafeCenter
Type: Boolean
Default: No
Whether flags dropped from a safe zone spawn in the center, as opposed to near the safe zone
player.

Flag:SafeOwned
Type: Boolean
Default: Yes
Whether flags dropped from a safe zone are owned by your team, as opposed to neutral.

Flag:SpawnRadius
Type: Integer
Default: 50
How far from the spawn center that new flags spawn (in tiles).

Flag:SpawnX
Type: Integer
Default: 512
The X coordinate that new flags spawn at (in tiles).

Flag:SpawnY

48

Type: Integer
Default: 512
The Y coordinate that new flags spawn at (in tiles).

Flag:SplitPoints
Type: Boolean
Default: No
Whether to split a flag reward between the members of a freq or give them each the full amount.

Flag:TKCenter
Type: Boolean
Default: No
Whether flags dropped by a team-kill spawn in the center, as opposed to near the killed player.

Flag:TKOwned
Type: Boolean
Default: Yes
Whether flags dropped by a team-kill are owned by your team, as opposed to neutral.

Flag:WinDelay
Type: Integer
Default: 200
The delay between dropping the last flag and winning (ticks).

General:DesiredPlaying
Type: Integer
Requires module: ap multipub

Default: 15
This controls when the server will create new public arenas.

General:Map
Type: String
The name of the level file for this arena.

General:MaxPlaying
Type: Integer
Default: 100
This is the most players that will be allowed to play in the arena at once. Zero means no limit.

General:NeedCap
Type: String
Requires module: arenaperm

If this setting is present for an arena, any player entering the arena must have the capability
specified this setting. This can be used to restrict arenas to certain groups of players.

General:ScoreGroup
Type: String
If this is set, it will be used as the score identifier for shared scores for this arena (unshared
scores, e.g. per-game scores, always use the arena name as the identifier). Setting this to the
same value in several different arenas will cause them to share scores.

Kill:BountyIncreaseForKill
Type: Integer
Number of points added to players bounty each time he kills an opponent

Kill:EnterDelay
Type: Integer

49

How long after a player dies before he can re-enter the game (in ticks)

Kill:FlagMinimumBounty
Type: Integer
Default: 0
The minimum bounty the killing player must have to get any bonus kill points for flags trans-
ferred, carried or owned.

Kill:JackpotBountyPercent
Type: Integer
Default: 0
The percent of a player’s bounty added to the jackpot on each kill. Units: 0.1%.

Kill:MaxBonus
Type: Integer
FIXME: fill this in

Kill:MaxPenalty
Type: Integer
FIXME: fill this in

Kill:PointsPerCarriedFlag
Type: Integer
Default: 0
The number of extra points to give for each flag the killing player is carrying. Note that flags that
were transfered to the killer as part of the kill are counted here, so adjust PointsPerKilledFlag
accordingly.

Kill:PointsPerKilledFlag
Type: Integer
Default: 100
The number of extra points to give for each flag a killed player was carrying. Note that the flags
don’t actually have to be transferred to the killer to be counted here.

Kill:PointsPerTeamFlag
Type: Integer
Default: 0
The number of extra points to give for each flag owned by the killing team. Note that flags that
were transfered to the killer as part of the kill are counted here, so adjust PointsPerKilledFlag
accordingly.

Kill:RewardBase
Type: Integer
FIXME: fill this in

Lag:C2SLossToDisallowFlags
Type: Integer
Default: 50
The C2S packetloss when a player isn’t allowed to pick up flags or balls. Units 0.1%.

Lag:C2SLossToSpec
Type: Integer
Default: 150
The C2S packetloss at which to force a player to spec. Units 0.1%.

Lag:PingToDisallowFlags
Type: Integer

50

Default: 500
The average ping when a player isn’t allowed to pick up flags or balls.

Lag:PingToIgnoreAllWeapons
Type: Integer
Default: 1000
The average ping when all weapons should be ignored.

Lag:PingToSpec
Type: Integer
Default: 600
The average ping at which to force a player to spec.

Lag:PingToStartIgnoringWeapons
Type: Integer
Default: 300
The average ping to start ignoring weapons at.

Lag:S2CLossToDisallowFlags
Type: Integer
Default: 50
The S2C packetloss when a player isn’t allowed to pick up flags or balls. Units 0.1%.

Lag:S2CLossToIgnoreAllWeapons
Type: Integer
Default: 500
The S2C packetloss when all weapons should be ignored. Units 0.1%.

Lag:S2CLossToSpec
Type: Integer
Default: 150
The S2C packetloss at which to force a player to spec. Units 0.1%.

Lag:S2CLossToStartIgnoringWeapons
Type: Integer
Default: 40
The S2C packetloss to start ignoring weapons at. Units 0.1%.

Lag:SpikeToSpec
Type: Integer
Default: 3000
The amount of time the server can get no data from a player before forcing him to spectator
mode (in ms).

Lag:WeaponLossToDisallowFlags
Type: Integer
Default: 50
The weapon packetloss when a player isn’t allowed to pick up flags or balls. Units 0.1%.

Lag:WeaponLossToIgnoreAllWeapons
Type: Integer
Default: 500
The weapon packetloss when all weapons should be ignored. Units 0.1%.

Lag:WeaponLossToSpec
Type: Integer
Default: 150

51

The weapon packetloss at which to force a player to spec. Units 0.1%.

Lag:WeaponLossToStartIgnoringWeapons
Type: Integer
Default: 40
The weapon packetloss to start ignoring weapons at. Units 0.1%.

Latency:ClientSlowPacketSampleSize
Type: Integer
Number of packets to sample S2C before checking for kickout

Latency:ClientSlowPacketTime
Type: Integer
Amount of latency S2C that constitutes a slow packet

Latency:S2CNoDataKickoutDelay
Type: Integer
Amount of time a user can receive no data from server before connection is terminated

Latency:SendRoutePercent
Type: Integer
Percentage of the ping time that is spent on the C2S portion of the ping (used in more accurately
syncronizing clocks)

log staff:commands
Type: String
Requires module: log staff

Default: ’warn kick setcm’
A list of commands that trigger messages to all logged-in staff.

Message:AllowAudioMessages
Type: Boolean
Whether players can send audio messages

Mine:MineAliveTime
Type: Integer
Time that mines are active (in ticks)

Mine:TeamMaxMines
Type: Integer
Maximum number of mines allowed to be placed by an entire team

Misc:ActivateAppShutdownTime
Type: Integer
Amount of time a ship is shutdown after application is reactivated

Misc:AllowSavedShips
Type: Integer
Whether saved ships are allowed (do not allow saved ship in zones where sub-arenas may have
differing parameters)

Misc:AntiWarpSettleDelay
Type: Integer
How many ticks to activate a fake antiwarp after attaching, portaling, or warping.

Misc:BounceFactor
Type: Integer

52

How bouncy the walls are (16 = no speed loss)

Misc:DecoyAliveTime
Type: Integer
Time a decoy is alive (in ticks)

Misc:DisableScreenshot
Type: Boolean
Default: No
Whether to disable Continuum’s screenshot feature (Cont .37+)

Misc:ExtraPositionData
Type: Integer
Whether regular players receive sysop data about a ship

Misc:FrequencyShift
Type: Integer
Amount of random frequency shift applied to sounds in the game

Misc:GreetMessage
Type: String
The message to send to each player on entering the arena.

Misc:MaxXres
Type: Integer
Default: 0
Maximum screen width allowed in the arena. Zero means no limit.

Misc:MaxYres
Type: Integer
Default: 0
Maximum screen height allowed in the arena. Zero means no limit.

Misc:NearDeathLevel
Type: Integer
Amount of energy that constitutes a near-death experience (ships bounty will be decreased by
1 when this occurs – used for dueling zone)

Misc:RegionCheckInterval
Type: Integer
Default: 100
How often to check for region enter/exit events (in ticks).

Misc:SafetyLimit
Type: Integer
Amount of time that can be spent in the safe zone (in ticks)

Misc:SeeEnergy
Type: Enumerated
Default: SEE NONE
Whose energy levels everyone can see: SEE NONE means nobody else’s, SEE ALL is everyone’s,
SEE TEAM is only teammates.

Misc:SelfScoreReset
Type: Boolean
Default: No
Whether players can reset their own scores using ?scorereset. */

53

Misc:SendPositionDelay
Type: Integer
Amount of time between position packets sent by client

Misc:SheepMessage
Type: String
The message that appears when someone says ?sheep

Misc:SlowFrameCheck
Type: Integer
Whether to check for slow frames on the client (possible cheat technique) (flawed on some
machines, do not use)

Misc:SpecSeeEnergy
Type: Enumerated
Default: SEE NONE
Whose energy levels spectators can see. The options are the same as for Misc:SeeEnergy, with
one addition: SEE SPEC means only the player you’re spectating.

Misc:SpecSeeExtra
Type: Boolean
Default: Yes
Whether spectators can see extra data for the person they’re spectating.

Misc:TeamKillPoints
Type: Boolean
Default: No
Whether points are awarded for a team-kill.

Misc:TickerDelay
Type: Integer
Amount of time between ticker help messages

Misc:TimedGame
Type: Integer
Default: 0
How long the game timer lasts (in ticks). Zero to disable.

Misc:VictoryMusic
Type: Integer
Whether the zone plays victory music or not

Misc:WarpPointDelay
Type: Integer
How long a portal is active

Misc:WarpRadiusLimit
Type: Integer
When ships are randomly placed in the arena, this parameter will limit how far from the center
of the arena they can be placed (1024=anywhere)

Modules:AttachModules
Type: String
This is a list of modules that you want to take effect in this arena. Not all modules need to be
attached to arenas to function, but some do.

Periodic:RewardDelay

54

Type: Integer
Default: 0
The interval between periodic rewards (in ticks). Zero to disable.

Periodic:RewardMinimumPlayers
Type: Integer
Default: 0
The minimum players necessary in the arena to give out periodic rewards.

Periodic:RewardPoints
Type: Integer
Requires module: points periodic

Default: 100
Periodic rewards are calculated as follows: If this setting is positive, you get this many points
per flag. If it’s negative, you get it’s absolute value points per flag, times the number of players
in the arena.

Prize:DeathPrizeTime
Type: Integer
How long the prize exists that appears after killing somebody

Prize:DontShareBrick
Type: Boolean
Default: No
Whether Brick greens don’t go to the whole team.

Prize:DontShareBurst
Type: Boolean
Default: No
Whether Burst greens don’t go to the whole team.

Prize:DontShareThor
Type: Boolean
Default: No
Whether Thor greens don’t go to the whole team.

Prize:EngineShutdownTime
Type: Integer
Time the player is affected by an ’Engine Shutdown’ Prize (in ticks)

Prize:MinimumVirtual
Type: Integer
Distance from center of arena that prizes/flags/soccer-balls will spawn

Prize:MultiPrizeCount
Type: Integer
Number of random greens given with a MultiPrize

Prize:PrizeDelay
Type: Integer
How often prizes are regenerated (in ticks)

Prize:PrizeFactor
Type: Integer
Number of prizes hidden is based on number of players in game. This number adjusts the
formula, higher numbers mean more prizes. (Note: 10000 is max, 10 greens per person)

55

Prize:PrizeHideCount
Type: Integer
Number of prizes that are regenerated every PrizeDelay

Prize:PrizeMaxExist
Type: Integer
Maximum amount of time that a hidden prize will remain on screen. (actual time is random)

Prize:PrizeMinExist
Type: Integer
Minimum amount of time that a hidden prize will remain on screen. (actual time is random)

Prize:PrizeNegativeFactor
Type: Integer
Odds of getting a negative prize. (1 = every prize, 32000 = extremely rare)

Prize:TakePrizeReliable
Type: Integer
Whether prize packets are sent reliably (C2S)

Prize:UpgradeVirtual
Type: Integer
Amount of additional distance added to MinimumVirtual for each player that is in the game

PrizeWeight:AllWeapons
Type: Integer
Likelihood of ’Super!’ prize appearing

PrizeWeight:AntiWarp
Type: Integer
Likelihood of ’AntiWarp’ prize appearing

PrizeWeight:Bomb
Type: Integer
Likelihood of ’Bomb Upgrade’ prize appearing

PrizeWeight:BouncingBullets
Type: Integer
Likelihood of ’Bouncing Bullets’ prize appearing

PrizeWeight:Brick
Type: Integer
Likelihood of ’Brick’ prize appearing

PrizeWeight:Burst
Type: Integer
Likelihood of ’Burst’ prize appearing

PrizeWeight:Cloak
Type: Integer
Likelihood of ’Cloak’ prize appearing

PrizeWeight:Decoy
Type: Integer
Likelihood of ’Decoy’ prize appearing

PrizeWeight:Energy

56

Type: Integer
Likelihood of ’Energy Upgrade’ prize appearing

PrizeWeight:Glue
Type: Integer
Likelihood of ’Engine Shutdown’ prize appearing

PrizeWeight:Gun
Type: Integer
Likelihood of ’Gun Upgrade’ prize appearing

PrizeWeight:MultiFire
Type: Integer
Likelihood of ’MultiFire’ prize appearing

PrizeWeight:MultiPrize
Type: Integer
Likelihood of ’Multi-Prize’ prize appearing

PrizeWeight:Portal
Type: Integer
Likelihood of ’Portal’ prize appearing

PrizeWeight:Proximity
Type: Integer
Likelihood of ’Proximity Bomb’ prize appearing

PrizeWeight:QuickCharge
Type: Integer
Likelihood of ’Recharge’ prize appearing

PrizeWeight:Recharge
Type: Integer
Likelihood of ’Full Charge’ prize appearing (not ’Recharge’)

PrizeWeight:Repel
Type: Integer
Likelihood of ’Repel’ prize appearing

PrizeWeight:Rocket
Type: Integer
Likelihood of ’Rocket’ prize appearing

PrizeWeight:Rotation
Type: Integer
Likelihood of ’Rotation’ prize appearing

PrizeWeight:Shields
Type: Integer
Likelihood of ’Shields’ prize appearing

PrizeWeight:Shrapnel
Type: Integer
Likelihood of ’Shrapnel Upgrade’ prize appearing

PrizeWeight:Stealth
Type: Integer

57

Likelihood of ’Stealth’ prize appearing

PrizeWeight:Thor
Type: Integer
Likelihood of ’Thor’ prize appearing

PrizeWeight:Thruster
Type: Integer
Likelihood of ’Thruster’ prize appearing

PrizeWeight:TopSpeed
Type: Integer
Likelihood of ’Speed’ prize appearing

PrizeWeight:Warp
Type: Integer
Likelihood of ’Warp’ prize appearing

PrizeWeight:XRadar
Type: Integer
Likelihood of ’XRadar’ prize appearing

Radar:MapZoomFactor
Type: Integer
A number representing how far you can see on radar

Radar:RadarMode
Type: Integer
Radar mode (0=normal, 1=half/half, 2=quarters, 3=half/half-see team mates, 4=quarters-see
team mates)

Radar:RadarNeutralSize
Type: Integer
Size of area between blinded radar zones (in pixels)

Repel:RepelDistance
Type: Integer
Number of pixels from the player that are affected by a repel

Repel:RepelSpeed
Type: Integer
Speed at which players are repelled

Repel:RepelTime
Type: Integer
Time players are affected by the repel (in ticks)

Rocket:RocketSpeed
Type: Integer
Speed value given while a rocket is active

Rocket:RocketThrust
Type: Integer
Thrust value given while a rocket is active

Security:MaxDeathWithoutFiring
Type: Integer

58

Default: 5
The number of times a player can die without firing a weapon before being placed in spectator
mode.

Shrapnel:InactiveShrapDamage
Type: Integer
Amount of damage shrapnel causes in it’s first 1/4 second of life

Shrapnel:Random
Type: Boolean
Whether shrapnel spreads in circular or random patterns

Shrapnel:ShrapnelDamagePercent
Type: Integer
Percentage of normal damage applied to shrapnel (relative to bullets of same level) (in 0.1%)

Shrapnel:ShrapnelSpeed
Type: Integer
Speed that shrapnel travels

Soccer:AllowBombs
Type: Boolean
Whether the ball carrier can fire his bombs

Soccer:AllowGoalByDeath
Type: Boolean
Default: No
Whether a goal is scored if a player dies carrying the ball on a goal tile.

Soccer:AllowGuns
Type: Boolean
Whether the ball carrier can fire his guns

Soccer:BallBlankDelay
Type: Integer
Amount of time a player can receive no data from server and still pick up the soccer ball

Soccer:BallBounce
Type: Boolean
Whether the ball bounces off walls

Soccer:BallCount
Type: Integer
Default: 0
The number of balls in this arena.

Soccer:BallLocation
Type: Boolean
Whether the balls location is displayed at all times or not

Soccer:CapturePoints
Type: Integer
Default: 1
If positive, these points are distributed to each goal/team. When you make a goal, the points
get transferred to your goal/team. If one team gets all the points, then they win as well. If
negative, teams are given 1 point for each goal, first team to reach -CapturePoints points wins
the game.

59

Soccer:DisableBallKilling
Type: Boolean
Default: No
Whether to disable ball killing in safe zones (Cont .38+)

Soccer:DisableWallPass
Type: Boolean
Default: No
Whether to disable ball-passing through walls (Cont .38+)

Soccer:GoalDelay
Type: Integer
Default: 0
How long after a goal before the ball appears (in ticks).

Soccer:MinPlayers
Type: Integer
Default: 0
The minimum number of players who must be playing for soccer points to be awarded.

Soccer:MinTeams
Type: Integer
Default: 0
The minimum number of teams that must exist for soccer points to be awarded.

Soccer:Mode
Type: Enumerated
Goal configuration ($GOAL ALL, $GOAL LEFTRIGHT, $GOAL TOPBOTTOM, $GOAL CORNERS 3 1,
$GOAL CORNERS 1 3, $GOAL SIDES 3 1, $GOAL SIDES 1 3)

Soccer:NewGameDelay
Type: Integer
Default: -3000
How long to wait between games. If this is negative, the actual delay is random, between zero
and the absolute value. Units: ticks.

Soccer:PassDelay
Type: Integer
How long after the ball is fired before anybody can pick it up (in ticks)

Soccer:Reward
Type: Integer
Default: 0
Negative numbers equal absolute points given, positive numbers use FlagReward formula.

Soccer:SendTime
Type: Integer
Default: 1000
Range: 100-3000
How often the server sends ball positions (in ticks).

Soccer:SpawnRadius
Type: Integer
Default: 20
How far from the spawn center the ball can spawn (in tiles).

Soccer:SpawnX

60

Type: Integer
Default: 512
Range: 0-1023
The X coordinate that the ball spawns at (in tiles).

Soccer:SpawnX/Y/RadiusN
Type: Integer
Default: 0
The spawn coordinates and radius for balls other than the first one. N goes from 1 to 3 (0 is take
care of by the settings without a number). If only Spawn... is set, all balls use it. If Spawn...
and Spawn...1 are set, even balls use Spawn... and odd use Spawn...1. If all four are set, use
mod 4.

Soccer:SpawnY
Type: Integer
Default: 512
Range: 0-1023
The Y coordinate that the ball spawns at (in tiles).

Soccer:UseFlagger
Type: Boolean
If player with soccer ball should use the Flag:Flagger* ship adjustments or not

Soccer:WinBy
Type: Integer
Default: 0
Have to beat other team by this many goals

Spawn:TeamN-X/Y/Radius
Type: Integer
Specify spawn location and radius per team. If only Team0 variables are set, all teams use them,
if Team0 and Team1 variables are set, even teams use Team0 and odd teams use Team1. It is
possible to set spawn positions for upto 4 teams (Team0-Team3). (Cont .38+)

Spectator:HideFlags
Type: Boolean
Default: No
Whether to show dropped flags to spectators (Cont .36+)

Spectator:NoXRadar
Type: Boolean
Default: No
Whether spectators are disallowed from having X radar (Cont .36+)

Team:AllowFreqOwners
Type: Boolean
Default: Yes
Whether to enable the freq ownership feature in this arena.

Team:DesiredTeams
Type: Integer
Default: 2
The number of teams that the freq balancer will form as players enter.

Team:ForceEvenTeams
Type: Other
Default: 0

61

Whether players can switch to more populous teams.

Team:FrequencyShipTypes
Type: Boolean
Default: No
If this is set, freq 0 will only be allowed to use warbirds, freq 1 can only use javelins, etc.

Team:IncludeSpectators
Type: Boolean
Default: No
Whether to include spectators when enforcing maximum freq sizes.

Team:InitialSpec
Type: Boolean
Default: No
If players entering the arena are always assigned to spectator mode.

Team:MaxFrequency
Type: Integer
Default: 10000
Range: 1-10000
One more than the highest frequency allowed. Set this below PrivFreqStart to disallow private
freqs.

Team:MaxPerPrivateTeam
Type: Integer
Default: 0
The maximum number of players on a private freq. Zero means no limit.

Team:MaxPerTeam
Type: Integer
Default: 0
The maximum number of players on a public freq. Zero means no limit.

Team:PrivFreqStart
Type: Integer
Default: 100
Range: 0-9999
Freqs above this value are considered private freqs.

Team:SpectatorFrequency
Type: Integer
Default: 8025
Range: 0-9999
The frequency that spectators are assigned to, by default.

Toggle:AntiWarpPixels
Type: Integer
Distance Anti-Warp affects other players (in pixels) (note: enemy must also be on radar)

TurfReward:MinFlags
Type: Integer
Default: 1
The minimum number of flags needed to be owned by a freq for that team to be eligable to
recieve points.

TurfReward:MinFlagsPercent

62

Type: Integer
Default: 0
The minimum percent of flags needed to be owned by a freq for that team to be eligable to
recieve points. (ex. 18532 means 18.532%)

TurfReward:MinPercent
Type: Integer
Default: 0
The minimum percent of points needed to be owned by a freq for that team to be eligable to
recieve points. (ex. 18532 means 18.532%)

TurfReward:MinPlayersArena
Type: Integer
Default: 6
The minimum number of players needed in the arena for anyone to be eligable to recieve points.

TurfReward:MinPlayersTeam
Type: Integer
Default: 3
The minimum number of players needed on a team for players on that team to be eligable to
recieve points.

TurfReward:MinTeams
Type: Integer
Default: 2
The minimum number of teams needed in the arena for anyone to be eligable to recieve points.

TurfReward:MinWeights
Type: Integer
Default: 1
The minimum number of weights needed to be owned by a freq for that team to be eligable to
recieve points.

TurfReward:MinWeightsPercent
Type: Integer
Default: 0
The minimum percent of weights needed to be owned by a freq for that team to be eligable to
recieve points. (ex. 18532 means 18.532%)

TurfReward:RecoverDings
Type: Integer
Default: 1
After losing a flag, the number of dings allowed to pass before a freq loses the chance to recover.
0 means you have no chance of recovery after it dings (to recover, you must recover before any
ding occurs), 1 means it is allowed to ding once and you still have a chance to recover (any ding
after that you lost chance of full recovery), ...

TurfReward:RecoverMax
Type: Integer
Default: -1
Maximum number of times a flag may be recovered. (-1 means no max)

TurfReward:RecoverTime
Type: Integer
Default: 300
After losing a flag, the time (seconds) allowed to pass before a freq loses the chance to recover.

63

TurfReward:RecoveryCutoff
Type: Enumerated
Default: TR RECOVERY DINGS
Style of recovery cutoff to be used. TR RECOVERY DINGS - recovery cutoff based on Re-
coverDings. TR RECOVERY TIME - recovery cutoff based on RecoverTime. TR RECOVERY DINGS AND TIME
- recovery cutoff based on both RecoverDings and RecoverTime.

TurfReward:RewardModifier
Type: Integer
Default: 200
Modifies the number of points to award. Meaning varies based on reward algorithm being used.
For $REWARD STD: jackpot = # players * RewardModifer

TurfReward:RewardStyle
Type: Enumerated
Default: TR STYLE DISABLED
The reward algorithm to be used. Built in algorithms include: TR STYLE DISABLED: dis-
able scoring, TR STYLE PERIODIC: normal periodic scoring but with the all the extra stats,
TR STYLE STANDARD: see souce code documenation (complex formula) + jackpot based on
players TR STYLE STD BTY: standard + jackpot based on bounty exchanged TR STYLE FIXED PTS:
each team gets a fixed # of points based on 1st, 2nd, 3rd,... place TR STYLE WEIGHTS: num-
ber of points to award equals number of weights owned

TurfReward:SafeRecievePoints
Type: Boolean
Default: No
Whether players in safe zones recieve reward points.

TurfReward:SetWeights
Type: Integer
Default: 0
How many weights to set from cfg (16 means you want to specify Weight0 to Weight15). If set
to 0, then by default one weight is set with a value of 1.

TurfReward:SpecRecievePoints
Type: Boolean
Default: No
Whether players in spectator mode recieve reward points.

TurfReward:TimerInitial
Type: Integer
Default: 6000
Inital turf reward ding timer period.

TurfReward:TimerInterval
Type: Integer
Default: 6000
Subsequent turf reward ding timer period.

TurfReward:WeightCalc
Type: Enumerated
Default: TR WEIGHT DINGS
The method weights are calculated: TR WEIGHT TIME means each weight stands for one
minute (ex: Weight004 is the weight for a flag owned for 4 minutes). TR WEIGHT DINGS
means each weight stands for one ding of ownership (ex: Weight004 is the weight for a flag that
was owned during 4 dings).

64

Wormhole:GravityBombs
Type: Boolean
Whether a wormhole affects bombs

Wormhole:SwitchTime
Type: Integer
How often the wormhole switches its destination

12.3 Other settings

General:AllowUnknown
File: passwd.conf
Type: Boolean
Requires module: auth file

Default: Yes
Determines whether to allow players not listed in the password file.

General:RequireAuthenticationToSetPassword
File: passwd.conf
Type: Boolean
Requires module: auth file

Default: Yes
If true, you must be authenticated (have used a correct password) according to this module or
some other module before using ?local password to change your local password.

12.4 More detail on specific sections

12.4.1 Flags

Flags in asss are implemented by the coordination of several modules: flagcore implements
the actual flag-related pieces of the game protocol, and general state-keeping. The rules for a
specific flag game is implemented by a fg_something module, of which two are supplied with
the server: fg_wz is a basic warzone-type flag game, where a team has to own all the flags to
win. fg_turf is a turf-style game, where the flags are stationary, and points are awarded based
on flags owned.

To get one of these games working, you should make sure flagcore and the desired flag game
module are both loaded. Then attach the desired flag game module to your arena, by listing
it in the Modules:AttachModules setting. Then configure it with the appropriate settings,
all of which can be found in the Flag section. At a minimum, for fg_wz, you need to set
Flag:FlagCount.

12.4.2 Energy/inventory viewing

There are two arena settings that control whether players see other player’s energy and ship
inventory (from spec):

• Misc:SpecSeeEnergy This affects what players in spec see. If it’s set to $SEE_ALL, spec-
tators see energy for all players. If it’s $SEE_SPEC, they see energy for only the player they
are spectating, and if it’s $SEE_NONE, they don’t see any player’s energy.

• Misc:SeeEnergy This is like the previous setting, but applies to players in ships. $SEE_ALL
and $SEE_NONE work as before. $SEE_SPEC isn’t allowed here, and a new option is
$SEE_TEAM, which allows everyone to see the energy of their teammates.

• Misc:SpecSeeExtra This boolean option determines whether spectators see the extra
inventory data for players they are spectating.

65

In addition, there are two capabilities that override the above settings. seeepd allows players
to see energy/inventory from spec, and seenrg allows energy viewing while playing.

13 Acknowledgements

Thanks to these people:

• divine.216 for general support, lots of help testing, banner support, and many useful
suggestions.

• Mine GO BOOM for lots of bug-finding and suggestions, as well as being the first person
besides me to actually contribute code to asss.

• Stag Shot for making sure powerball isn’t left out, timer features, and other small contri-
butions.

• GiGaKiLLeR for contributing a turf rewards module.

• Mr. Ekted for technical help and discussions.

• ZippyDan for encouragement and comic relief.

• xalimar for shell accounts and hosting, mostly.

• numpf for design critiques and other criticism.

• Remnant for being the first person to log into asss (besides me, of course), and help testing.

• The rest of the PowerBot chat for friendly conversation and entertainment.

• Dr Brain for being brave enough to try asss on a real live zone, report all the problems he
had, and spend time helping me debug them.

• Catid for a bunch of contributions including security and other bug fixes.

• PriitK for helping with Continuum interoperability and also for some ambitious feature
suggestions.

• D.A.F. (not a subspace player) for conversations on design and more.

66

