
asss Development Guide

Version 1.2

January 20, 2004

1 Introduction

If you’re reading this, you probably already know that asss is a server for the multiplayer
game Subspace, written mostly in C and Python. This document will try to help you to
understand how asss works internally and how to develop for it.

There are three types of things you might want to do with asss: modify the existing
source (the stuff in the core distribution), write new modules from scratch in C, and write
new modules from scratch in Python. You’re welcome to do any of those three things,
depending on your goals, but I’d like to encourage people to try to write new modules in
Python if possible, and only use C if there’s a good reason for it (efficiency concerns, linking
with other libraries, etc.). Don’t let the fact that you don’t know Python discourage you;
it’s a very easy language to learn. Also don’t be discouraged by the current incompleteness
of the Python interface to asss. It will improve as users submit requests for things that
they need added to it.

2 Building

If you want to build all of asss from scratch, there are a few dependencies you need to
be aware of: Python, version 2.2 or greater, Berkeley DB, version 4.0 or greater, and
the mysql client libraries (any recent version should be ok). If you’re building on a unix
system, you’ll need to use GNU make.

The basic procedure is to edit the definitions at the top of the provided Makefile to
point to the directories where your libraries are installed. After that, running make should
build all of asss, which consists of a binary named asss and a bunch of .so files containing
the modules. Running make install will copy those binaries to the bin directory one
level up.

If you’re missing one or more of those libraries, you can still build the remaining parts
of asss: If you’re missing Python, remove pymod.so from the list of stuff to build (the
variable ALL_STUFF). If you’re missing mysql, remove database.so. If you’re missing
Berkeley DB, remove persist.so.

1



2.1 Building on FreeBSD

FIXME

2.2 Building on Windows

FIXME

3 Basic Architecture

I had several goals when designing asss: It should be modular, so that server admins
could plug in their own custom functionality in addition to or in place of any part of the
server. It should support runtime loading, so functionality could be added, removed, and
upgraded without taking down the server. It should be robust and efficient.

Those goals led to a design that might look a little scary at first, but is actually pretty
simple if you put a little effort into understanding it. However, there’s a lot of indirection,
and it can be difficult to understand the control flow in certain places, because of the
pervasive use of callbacks. Hopefully this document can provide enough information that
anyone can understand how it all works, and more importantly, can figure out how to
modify or extend it to do what they want.

The three main pieces of the architecture are modules, interfaces, and callbacks.

3.1 Modules

Almost all of the code in asss is part of a module (just about everything except main.c,
module.c, cmod.c, and util.c). A module is just a piece of code that runs as part of the
server. Modules can currently be written in either C or Python.

Some examples of modules are core, which manages player logins and other really im-
portant bits, flags, which manages the flag game, buy which provides an implementation
of the ?buy command, pymod which allows Python modules to exist, and persist, which
provides database services for the rest of the server.

Modules written in C have a single entry point function.
Modules by themselves can’t do very much. In order to be useful, modules have to

talk to other modules. The two main ways for modules to communicate are interfaces and
callbacks.

3.2 Interfaces

An interface in asss is just a set of function signatures. They’re implemented by C structs
containing function pointers (and rarely, pointers to other types of C data). Each interface
has an identifier (a string, although a C macro is used to hide the actual value of the string),
and the identifier contains a version number. If the contents of an interface is changed,
the version number should be incremented.

Interfaces are used for two slightly different purposes in asss: they are used for export-
ing functionality from one module to others, and they are used for customizing a specific

2



part of the server’s behavior. Both uses used the same set of functions, although in slightly
different ways, so you should be aware of the differences.

The module manager (one of the pieces of asss that isn’t in a module itself) manages
interface pointers for the whole server. It has several available operations, which are
exposed through an interface of its own:

• A module can register an interface for other modules to use. To do this, it creates
a struct and initializes its fields with pointers to the functions it’s going to use to
implement the interface. (Almost always , this struct will be statically allocated.) A
special macro is used to provide the identifier of the interface that this struct is going
to implement, and also to provide a unique name for this implementation. Then the
RegInterface function of the module manager interface is called.

An interface can be registered globally for the whole server, or registered for a single
arena only.

• A module can unregister an interface that it has previously registered, using UnregInterface.
The same arena pointer that is passed into RegInterface should be passed into this
function. Note that unregistering an interface can fail! See below about reference
counts.

• A module can request a pointer to an implementation of an interface, given the
interface identifier, using GetInterface.

• A module can request a pointer to a specific implementation of an interface, with
GetInterfaceByName.

• A module can return a reference to an interface that it acquired with one of the
previous two functions, using ReleaseInterface.

3.2.1 Reference counts

Implementations of interfaces are reference counted. A module that calls either of the
GetInterface calls that returns a valid pointer owns a reference to that implementation,
and must later return it with ReleaseInterface. Calling UnregInterface on an interface
pointer will fail if there are any outstanding references to that pointer (and it will return
the number of references).

3.2.2 Arena-specific interfaces

The functions RegInterface, UnregInterface, and GetInterface all take an optional
arena pointer. Interfaces that serve only to export functionality will generally be registered
globally for the whole server, and there is only one possible implementation for each of
them. To register an interface globally, or to request a globally registered interface, the
macro ALLARENAS should be passed as the arena pointer.

Interfaces that are used to select among different behaviors might be registered per-
arena. Passing a pointer to a valid arena to RegInterface makes that interface pointer
available only to modules who call GetInterface with that arena. If a module calls
GetInterface with a valid arena pointer, but there is no interface pointer with that id

3



registered for that arena, it will fall back to an interface registered globally with that id,
if possible. That allows a module to register a ”default” implementation for an interface,
and let other modules override it for specific arenas.

3.2.3 Priorities

Another feature available when using the interface system to select among different be-
haviors is priorities. Priorities should be used when it is expected that multiple imple-
mentations of the same interface will be registered globally at the same time. Currently,
priorities are used when selecting which authentication implementation to use.

An implementation of an interface may specify a priority (any positive integer) using
a variant of the macro used to specify the identifier and implementation name. As long
as all implementations of that interface are registered with a priority, GetInterface will
always return the one with the highest priority (in the absence of priorities, the last one
registered will be returned).

Note that to use the priorities feature, all implementations of that interface must be
registered with priorities.

3.2.4 Example: declaring, using, and defining interfaces

Declaring Here’s a sample declaration of an interface, taken from core.h:

#define I_FREQMAN "freqman-1"

typedef struct Ifreqman {
INTERFACE_HEAD_DECL
void (*InitialFreq)(Player *p, int *ship, int *freq);
void (*ShipChange)(Player *p, int *ship, int *freq);
void (*FreqChange)(Player *p, int *ship, int *freq);

} Ifreqman;

The definition on the first line creates a macro that will be used to refer to the in-
terface identifier (which consists of the string “freqman” followed by a version number).
By convention, interface id macros are named I_<something>, and identifier strings are
<something>-<version>.

Next, a C typedef is used to create a type for a struct. By convention, struct types
start with a capital I followed by the interface name in lowercase. The first thing in the
struct is a special macro (INTERFACE_HEAD_DECL) that sets up a few special fields used
internally by the interface manager. The three fields are declared as function pointers
using standard C syntax.

Using To call a function in this interface, a module might use code like this (adapted
from core.c):

int freq = 0, ship = player->p_ship;
Ifreqman *fm = mm->GetInterface(I_FREQMAN, player->arena);
if (fm) {

4



fm->InitialFreq(player, &ship, &freq);
mm->ReleaseInterface(fm);

}

This code declares a pointer to a freq manager interface, and requests the registered
implementation of the freq manager interface for the arena that the player is in. If it finds
one, it calls a function in it and then releases the pointer.

The freq manager interface is of the kind used to select among alternate behavior. For
interfaces used for exporting functionality, typically a module will call GetInterface for
all the interfaces it needs when it loads, and then keep the pointers until it unloads, at
which point it calls ReleaseInterface on all of them.

Defining This is a trivial implementation of the freq manager interface, used by the
recorder module to lock all players in spectator mode:

local void freqman(Player *p, int *ship, int *freq)
{

*ship = SPEC;
*freq = 8025;

}

local struct Ifreqman lockspecfm =
{

INTERFACE_HEAD_INIT(I_FREQMAN, "fm-lock-spec")
freqman, freqman, freqman

};

First the functions that will implement the interface are defined. In this case, one real
function is being used to implement three functions in the interface. Then a static struct
is declared to represent the implementation. The first thing in the struct initializer is a
macro, analogous to the macro used in the declaration. INTERFACE_HEAD_INIT takes two
arguments: the first is the interface identifier, and the second is the unique name given to
this implementation. Alternately, INTERFACE_HEAD_INIT_PRI can be used, which takes a
third argument that is the priority.

3.3 Callbacks

Callbacks are somewhat simpler than interfaces, although they share many features. A
callback is a single function signature, along with an identifier. Callback identifiers aren’t
versioned, but they probably should be.

Like interfaces, callbacks are also managed by the module manager. They can be
registered globally or for a single arena. Unlike interfaces, many callbacks registered to
the same identifier can exist at once, and all are used. The module manager functions
dealing with callbacks are:

• To register a callback, use RegCallback, which takes a callback id, a function to call,
and an arena to register it to. Like interfaces, use ALLARENAS to indicate a globally
registered callback.

5



• Use UnregCallback to unregister a callback. It should be called with the same
arguments as RegCallback.

• To query which callbacks are currently registered for an identifier, use LookupResult.
They will be returned as a list.

• After using the list, use FreeLookupResult to return the memory used by the list.

Most of the time, you can use a provided macro to invoke all the callbacks of a certain
type, so you won’t need to use LookupResult and FreeLookupResult at all.

3.3.1 Example: declaring, defining, and calling a callback

Declaring Here’s how the flag win callback is declared:

#define CB_FLAGWIN "flagwin"
typedef void (*FlagWinFunc)(Arena *arena, int freq);

There’s a macro (the naming convention is to start callback macro names with CB_),
and a C typedef giving a name to the function signature. All callbacks should return void.

Defining To register a function to be called for this event:

local void MyFlagWin(Arena *arena, int freq)
{

/* ... contents of function ... */
}

/* somewhere in the module entry point */
mm->RegCallback(CB_FLAGWIN, MyFlagWin, ALLARENAS);

Calling There is a special macro provided to make calling callbacks easier: DO_CBS. To
use it, you must provide the callback id, the arena that things are taking place in (or
ALLARENAS if there is no applicable arena), the C type of the callback functions, and the
arguments to pass to each registered function. It looks like:

DO_CBS(CB_FLAGWIN, arena, FlagWinFunc, (arena, freq));

4 Important data structures

There are several important structures that you’ll need to know about to do anything
useful with asss. This section will describe each of them in detail.

6



4.1 Player

The Player structure is one of the most important in asss. There’s one of these for
each client connected to the server. These structures are created and managed by the
playerdata module. (The details of when exactly in the connection process a player
struct is allocated is covered below, in the section on the player state machine.)

The first part of the player struct, which contains many important fields, is actually in
the format of the packet that gets sent to players to inform them about other players. The
benefit of using the packet format directly to store those fields is that there’s no copying
necessary when the packet needs to be sent, as the necessary information is already in the
right format.

The format of the player data packet, and then the main player struct, will be given
below, and then each field will be covered in detail.

struct PlayerData {
u8 pktype;
i8 ship;
u8 acceptaudio;
char name[20];
char squad[20];
i32 killpoints;
i32 flagpoints;
i16 pid;
i16 freq;
i16 wins;
i16 losses;
i16 attachedto;
i16 flagscarried;
u8 miscbits;

};

struct Player {
PlayerData pkt;

#define p_ship pkt.ship
#define p_freq pkt.freq
#define p_attached pkt.attachedto

int pid, status, type, whenloggedin;
Arena *arena, *oldarena;
char name[24], squad[24];
i16 xres, yres;
ticks_t connecttime;
unsigned int ignoreweapons;
struct PlayerPosition position;
u32 macid, permid;
char ipaddr[16];
const char *connectas;

7



struct {
unsigned authenticated : 1;
unsigned during_change : 1;
unsigned want_all_lvz : 1;
unsigned during_query : 1;
unsigned no_ship : 1;
unsigned no_flags_balls : 1;
unsigned sent_ppk : 1;
unsigned see_all_posn : 1;
unsigned padding1 : 24;

} flags;
byte playerextradata[0];

};

Details on the specific fields of the player data packet:

pktype The type byte for the player data packet.

ship The ship that the player is in. 0 for Warbird, 8 for spectator.

acceptaudio Whether the player is willing to accept .wav messages.

name The player’s name. Note: this field is not necessarily null-terminated.

squad The player’s squad. Note: this field is not necessarily null-terminated.

killpoints, flagpoints Part of the player’s score. Note that asss doesn’t use these fields
as the authoritative score, and in the future, they might be unused entirely.

pid An identifier for the player. Pids are used extensively in the game protocol, but not
used much internally in the server.

freq The player’s frequency.

wins, losses More parts of the score. See notes on killpoints and flagpoints.

attachedto Contains the pid of the player that this player is a turret on.

flagscarried The number of flags that the player is holding. This field isn’t guaranteed
to be accurate, and is only used to help the client figure out where the flags are when
it first enters.

miscbits Currently, this field is used only for specifying whether the player has a King-
of-the-Hill crown or not.

Details on the specific fields of the player structure:

pkt This is the player data packet described above.

p ship This “virtual” field refers to the ship field of pkt.

8



p freq This “virtual” field refers to the freq field of pkt.

p attached This “virtual” field refers to the attachedto field of pkt.

pid The player id of the player. It should always agree with the pid value in pkt.

status The current state of the player. See the description of the player state machine
below. State values are named with an initial S_.

type The client type of this player. Possible values are T_UNKNOWN, T_FAKE (a fake player
created and managed by the server, used for autoturrets), T_VIE (a Subspace 1.34
or 1.35 client), T_CONT (a Continuum client), or T_CHAT (a client using the chat
protocol).

whenloggedin This field is used by the player state machine to make the proper transi-
tions when a player is logging out.

arena A pointer to the arena that this player is in. It may be null if the player isn’t in
an arena yet, or is between arenas.

oldarena This stores the previous value of arena when arena is set to null. It’s used to
make sure scores and other persistent information is saved properly when switching
arenas or logging out.

name The player’s name, guaranteed to be null terminated.

squad The player’s squad, guaranteed to be null terminated.

xres, yres The player’s screen resolution. Only valid when arena is not null and for
standard (T_VIE and T_CONT) clients.

connecttime The time when the player first connected (in ticks).

position The last known position of the player. This contains a few self-explanatory
fields: x, y, xspeed, yspeed, and bounty. It also contains a status field, which is a
bitfield of various ship equipment.

macid, permid Various identifying values provided by standard clients.

ipaddr A textual representation of the IP address the client is connected from.

connectas If the player has connected to a virtual server that specifies a default arena
name, this will point to that name. Otherwise it will be null.

flags These are a bunch of one-bit flags that are used throughout the server:

authenticated If the player has been authenticated by either a billing server or a
password file.

during change Set when the player has changed freqs or ships, but before he has
acknowledged it.

want all lvz If the player wants optional .lvz files.

9



during query If the player is waiting for db query results.

no ship If the player’s lag is too high to let him be in a ship.

no flags balls If the player’s lag is too high to let him have flags or balls.

sent ppk If the player has sent a position packet since entering the arena.

see all posn If the player is a bot who wants all position packets.

playerextradata This variable-length array is carved up by the player manager to store
per-player data for other modules in the server. See the section on per-player data
below.

4.2 Arena

Compared to players, the arena struct is relatively simple. Arenas are often used solely
by comparing pointers for equality, although there are several useful fields:

struct Arena {
int status;
char name[20], basename[20];
ConfigHandle cfg;
int specfreq;
byte arenaextradata[0];

};

status Stores the loading/unloading state of the arena. Most arenas will be in ARENA_RUNNING.

name This is the arena’s actual name, used for displaying to clients, keeping track of
non-shared scores, and many other things.

basename This is a name derived from the arena name, but will trailing digits stripped
off (for public arenas, whose “name” field contains only digits, the “basename” field
contains the word “public”). This is used for keeping track of shared scores and for
locating settings for the arena.

cfg This is a handle for the arena’s main configuration file. There is only one configuration
file loaded by default for each arena, although it may include other files, and modules
may load different configuration files themselves.

specfreq This field is a concession to practicality. The “Team:SpectatorFrequency” set-
ting was being queried in several places in different modules, so rather than duplicate
work, this setting is provided here for modules to use without querying the configu-
ration file.

arenaextradata Like “playerextradata,” this variable-sized array is managed by the
arena manager to provide per-arena space for other modules.

10



4.3 Target

A target is a (sometimes implicit) representation of a set of players. Currently, targets
are used as a parameter to command callbacks, to indicate who the command should be
applied to, and they are also used as parameters to some of the functions in the game
interface, to warp or prize some set of players at once.

In a command function, targets can be used by accessing their fields directly, or by
using the TargetToSet function in the playerdata interface to convert the target into a
simple list of players.

Targets can be constructed simply by declaring one on the stack and initializing its
fields. They can also be dynamically allocated, although this isn’t often necessary.

Targets come in several types, some of which use additional data (besides the type
itself) to specify the set. The data is kept in a C union, since targets can only be of one
type at once.

The most trivial target is of type T_NONE and means the empty set of players. A single-
player target is of type T_PLAYER and the p field of the data union points to that player.
An arena target (T_ARENA) indicates all players in the given arena. A freq target (T_FREQ)
means all the players on a given team in a given arena. Another simple target, T_ZONE,
means everyone logged into the server. Finally, an arbitrary set of players can be specified
using the T_LIST type, which uses the list field of the data union.

This is the definition of the target struct:

typedef struct {
enum {

T_NONE,
T_PLAYER,
T_ARENA,
T_FREQ,
T_ZONE,
T_LIST

} type;
union {

Player *p;
Arena *arena;
struct { Arena *arena; int freq; } freq;
LinkedList list;

} u;
} Target;

5 Memory management

Memory management in asss is relatively simple. Many sorts of memory in the server,
such as the global list of players and arenas, are managed by core modules. Others, such
as the links of the linked list library, are handled by the utility library, and a module only
has to use the linked list functions.

11



Sometimes, though, a module will need to allocate memory to store private data in.
There are three types of memory a module will want to allocate: some amount of space
to store data for each player, space to store data for each arena, and arbitrary chunks of
memory for whatever use. Each type will require a different way of allocating memory.

5.1 Per-player data

A module can call the AllocatePlayerData function in playerdata with a number of
bytes to reserve that amount of space for each player. The value returned is a key, which
can later be used to access that memory, given a player pointer. (Valid keys are positive
integers. If the return value is negative, the allocation failed.) Modules that have used
AllocatePlayerData must call FreePlayerData when they don’t need the space anymore
(typically during unloading).

To access the data, a macro has been provided: PPDATA(player, key) which will
return a pointer to the start of the per-player space specified by the key, for the given
player.

5.2 Per-arena data

This is just like per-player data, except you will use the functions AllocateArenaData
and FreeArenaData in arenaman, and the macro P_ARENA_DATA(arena, key) to access
the data for a given arena.

5.3 Everything else

To allocate arbitrary chunks of memory, use the functions amalloc and afree, which
work just like standard malloc and free, except that amalloc will never return NULL (it
will halt the server with a memory error instead), and afree can safely be used on null
pointers.

Also try to be aware of instances where data can be allocated on the stack, which will
generally be more efficient than dynamic allocation. If the size of the data isn’t known in
advance, the system’s alloca function can be used. If you need to pass a single-element
linked list to a function, one can be constructed on the stack by cheating a little bit with
the list abstraction, although you might want to use the lists normally to improve the
clarity of your code.

5.4 Typical usage

Sometimes a module needs to store a large amount of data for each player, but it’s for a spe-
cific game type that’s only running in a few arenas, and it will only apply to a small number
of the players in the zone. Allocating a large amount of data with AllocatePlayerData
will waste space in that situation, since that reserves space for every player, not just the
ones that need it. There are two possible solutions here. One is to just do it anyway, and
waste a bit of memory. The other is to allocate only room for a pointer in the per-player
data, and have the pointer be null for players who don’t need the data, and point to valid
data (allocated with afree when the player enters an arena) for players who do need

12



it. Which solution to use depends on several factors, such as how many bytes are being
allocated, and what proportion of players are expected to need the data.

In general, if the data is more than 20-24 bytes in length and a significant proportion of
players are expected not to need the data, you should consider using a per-player pointer
and manually allocating the bulk of the data.

5.5 Internals

Per-player and per-arena data work by allocating a big chunk of space at the end of the
player and arena structs, which is divided up between modules to store the data. As an
example, let’s say playerdata allocates 4096 bytes of extra space along with each player
struct (the exact amount is configurable). It might provide bytes 128-192 of that space to
one module to use for its private data, and then bytes 192-204 to another module. The
offset of the range from the start of the extra data array is the key returned to client
modules, and the macro simply adds that offset to the start of the array.

This solution is simple and efficient. The only disadvantage is that the amount of extra
data for players, and for arenas, is determined at server bootup, and can’t be increased or
decreased while the server is running. This may lead to situations where a module can’t be
loaded at runtime because there isn’t enough room in the per-player space left. It might
also waste a significant amount of space if 4k is allocated for each player but only 1.5k
is used by the loaded of modules. An admin particularly concerned about memory might
want to check the amount of per-player and per-arena space used by some desired set of
modules, then set the allocated amounts to be slightly more than those (just to be on the
safe side).

6 Threading

asss is a multithreaded program, and will generally have several threads of execution
doing important things at the same time. You don’t need to know all the threads and
their functions to write a module, but you do have to be aware of concurrency issues in
shared data.

The most important shared data are the global lists of players and arenas. The player
list, managed by playerdata, is protected by a read-write lock, and you must acquire it
before iterating through the list (the same lock protects a few other items, like player status
values). The arena list is also protected with a read-write lock, managed by arenaman.

FIXME: write more here

6.1 How to use threads in a module

First, consider well whether you really need a separate thread. Possible good reasons to
use threads in your module are: it greatly simplifies the implementation of some aspect of
the module, or the module makes unavoidable calls that can potentially block for a very
long time.

How long a call needs to block before you should consider using threads depends on
the path on which that call is made. If it only blocks for a long time during module load,

13



like gethostbyname in the directory module, then there’s no need for a thread. If it’s
something that happens relatively often, like writing to a file during on every position
packet, as in the record module, a thread is probably called for.

If you’ve decided that you need threads, you can simply go ahead and use any of the
pthreads library to create and synchronize your threads. A simple synchronized queue
for message passing between threads is part of the utility library, and may be useful for
modules that deal with threads.

6.2 Internals

The main thread in asss runs in the main loop module, and is used for running timer
events. The net module has three threads of its own, one for receiving packets from the
network and processing unreliable packets, one for processing reliable packets, and one for
sending packets. The logging module has one thread that runs log handlers. The persist
module uses one thread to do its database work, and mysql uses a thread to communicate
with the mysql database server. The record module uses one thread (dynamically created)
for each arena that is either recording or playing back a saved game.

7 Persistent data

The persistent data interface is one of the most confusing parts of asss, but the concept
behind it is relatively simple, so it shouldn’t be hard to use it after a little thought.

The service provided by the persist module is persistence of per-player, per-arena, and
global data. Some examples of things that might use it are player scores, arena statistics
(e.g., kills by ship type), a private staff message board, player inventory (in a RPG-type
game), and a shutup timeout.

Data stored by persist is opaque binary data. Serialization of the actual data that
the module wants to store into a byte stream is the responsibility of the client module.
Keeping that data around between invocations of the server and sessions of the player is
the responsibility of persist.

To use persist a client module must provide some information, along with three
functions that persist will call to manipulate the module’s data.

The first choice is whether the persistent data is to be stored per-player or per-arena.
Note that really global data (one copy for the whole server) counts as per-arena data.

The second choice is the scope of the data. There are two choices for scope: either
there is a single copy of the data for all arenas, or there’s a separate copy for each arena.
The single copy model is specified by PERSIST_ALLARENAS, and the one copy model by
PERSIST_GLOBAL. Note that either option can be specified for both per-player and per-
arena data. Per-player global data means there’s one copy of the data for each player
(e.g., an inventory in an RPG spanning multiple arenas). Per-player all-arena data means
there’s one copy for each (player, arena) pair (e.g., regular scores). Per-arena global data
is simply global data; there is only one copy. Per-arena all-arena data means there’s one
copy for each arena (e.g., base win statistics).

Note that you don’t have to actually store data for each entity. If you want some per-
arena data stored only for a few arenas, simply return an empty piece of memory when

14



queried for the data for an arena to which it doesn’t apply.
The third choice is the interval that the data should be stored for. This basically

indicates when the data gets reset. There are several intervals defined in the server:
“forever,” which as its name implies, never gets reset; “per-reset,” which is supposed to
be something like a score reset (around two weeks); “per-game,” which is reset at the end
of each flag or ball game (or at the staff’s discretion); and “per-map-rotation,” which is
reset when the map changes.1

Historical data for intervals before the current one is saved in the database also, and can
be queried by the appropriate tools (see the User Guide section on querying the database).

Finally, you must provide a unique key that will differentiate your data from data
stored by other modules. A key is just a 32-bit integer.

After all that information, you’ll need to write three functions (no matter whether your
data is per-player or arena and what its scope is).

The GetData function (you can name it whatever you want, that’s just the name of the
pointer in the struct you provide to persist) is used to query your module for data to be
written to the database. It’s called when a player leaves an arena or disconnects from the
server, or when an arena is being unloaded, to save the data from that entity before it’s
gone, and it’s also called periodically every few minutes, to make sure the data on disk is
relatively recent, in case of a server crash.

When GetData is called, the client module should serialize its data into the buffer
passed into the function, and then return the length of the serialized data. Returning zero
indicates that it has no data to store for this entity.

The SetData function is called when a player logs in or enters an arena, or when an
arena is created. When called, the client module should deserialize data from the provided
buffer into whatever form it will use it in.

ClearData is called before SetData and can be used to clean up memory from the
previous version of the data. When called, the client module should set the relevant data
to starting values, as if a player or arena with no previously recorded data is being created.
ClearData will also be called when an interval ends (immediately after a GetData call to
get the last version of the data), to clear all data for the new interval.

Finally, you pack up all that information and pointers to your functions in a statically
allocated and initialized struct (of type PlayerPersistentData or ArenaPersistentData),
and call persist->RegPlayerPD or persist->RegArenaPD. The persist module will be
calling your getters and setters from its own thread, so you should use whatever locking
is necessary to ensure correctness.

8 The Python interface

FIXME
1This currently doesn’t happen automatically when the map changes.

15



9 Misc. internals

9.1 The player state machine

FIXME

9.2 The arena state machine

FIXME

10 Reference

10.1 Source code files

FIXME

10.2 Interfaces

FIXME

10.3 Callbacks

FIXME

10.4 The utility library

FIXME

11 Tutorials

11.1 log console

FIXME

11.2 logman

FIXME

16


